J-Link ARM
GDB Server

User guide of the
J-Link ARM GDB Server

Software Version 4.04
Manual Rev. 0

Date: March 31, 2009

Document: UM08005

O —
/SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (the manufacturer) assumes no
responsibility for any errors or omissions. The manufacturer makes and you receive
no warranties or conditions, express, implied, statutory or in any communication with
you. The manufacturer specifically disclaims any implied warranty of merchantability
or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2007 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.
Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG
In den Weiden 11

D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

Email: support@segger.com

Internet: http://www.segger.com

Manual versions

This manual describes the latest software version. If any error occurs, please inform
us and we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact us.

Manual version Date By Explanation
Chapter "Debugging with GDB"
4.04 Rev. 0 090331 AG * Remote command "flash cpuclock" added.

* Remote command "interface" added.

Chapter "Debugging with GDB"

3.91 Rev. 0 080821 AG | * "Debugging on Cortex-M3 devices" added.
* "Supported remote commands" updated.

3.90 Rev. 0 080811 AG | Several corrections.

3.84 Rev. 1 080617 AG Chapter "Debugging with GDB

* Remote command "AllowSimulation" added.

Chapter "Licensing" added.

3.80 Rev. 2 080408 AG Chapter "Intro" updated.
Chapter "Debugging with GDB":
3.80Rev. 1 080215 | AG | pelts SN L feen downloade added.
* Remote command "flash breakpoints" added.
Chapter "Debugging with GDB":
3.80 Rev. 0 080206 SK * Remote command "flash device" added.
Chapter "Flash download and Flash breakpoints" added.
3.78 Rev. 1 071213 00O | General update.
Commands WriteU8, WriteU16, WriteU32 added.
3.64 Rev. 3 070308 SK Chapter "Debugging with GDB"

* Subchapter "Yagarto" added.
Chapter "Licensing" enhanced.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

Manual version Date By Explanation
3.64 Rev. 2 070307 SK | Chapter "Licensing" added.
3.64 Rev. 1 070305 SK | Chapter "Command line options" added.
3.60 Rev. 1 070222 SK Chapter D'fabugglpg with GDB
Command "speed" updated.
Various layout and content improvements.
Chapter "About this document" added.
3.50 Rev. 1 061025 SK Egsﬂged chapter "Setup" and moved into chapter "Introduc-
Chapter "Debugging with GDB" revised.
Subchapter "GDB extensions" added.
3.30 Rev. 1 060703 00 ﬁ;tti)rfgapter Supported remote commands": Added reset type
3.23 Rev. 1 060526 TQ | Minor improvements.
3.21 Rev. 1 060512 TQ Several corrections in chapter “Using DIGI evalboards” on
page 45.
1.00 Rev. 1 060407 OO | Initial manual version.
Software versions
Software .
. Date By Explanation
version
3.78a 071213 OO | Several improvements.
3.30g 060703 OO | Several improvements.
3.23a 060526 TQ | Several improvements.
3.21b 060512 TQ | Dialog based user interface added.
1.00 060407 TQ | Initial software version.

J-Link ARM GDB Server (UM08005)

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)
The C programming language
The target processor

¢ DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that emFile offers. It assumes you
have a working knowledge of the C language. Knowledge of assembly programming
is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Text that you enter at the command-prompt or that appears on the

Keyword display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.

Sample Sample code in program examples.

Reference Reference to chapters, tables and figures or other documents.

GUIElement | Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI

’ \ C software components (middleware) for embedded

systems in several industries such as telecom, medi-
/ cal technology, consumer electronics, automotive
SEGG EH industry and industrial automation.

SEGGER’s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

United States Office:
http://www.segger-us.com

Corporate Office:
http://www.segger.com

EMBEDDED SOFTWARE
(Middleware)

emWin

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
————| embOS is an RTOS designed to offer
[the benefits of a complete multitasking
C— system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile

File system

emFile is an embedded file system with

FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-

mum memory consumption in RAM and

ROM while maintaining high speed.

Various Device drivers, e.g. for NAND

and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

emUSB

USB device stack

A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

g

SEGGER TOOLS

Flasher

Flash programmer

Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace

JTAG emulator with trace

USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

J-Link ARM GDB Server (UM08005)

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

Table of Contents

N 1 1 o To [[1 0] o USRS 9
1.1 GDB / GDB SEIVEI OVEIVIEW 1uutttiiiittttetiiissessrisssessaasnestanteesrarserriiairereinnnes 10
1.2 Hardware requUIiremMENtS ..o i i e e e eneaas 10
1.3 = (81 PP 10

Y2 W (o7 =] o 11 o o TSP PP PP PPPPPPPPPPP 11
2.1 |l o Yo [6T o o PP 12
2.2 [ol=T o F < Y 1= 12
2.2.1 BUIIE-IN [ICBNSE 1ttt i et 12
2.2.2 KeY-Dased [ICBN SO ittt e e e 13
2.2.3 “Free evaluation and non commercial use™ liCENSe......c.coviiiiiriiiiiiiineenens 13

3 Debugging WIth GDBcccoo it e e e e e e e e e e e e reraaaaa 15
3.1 Starting the J-LinK GDB SeIVer . .uuiiiii it i it e e ar it aaeeraneeas 16
3.1.1 0T gl o =T =T = 16
3.2 Setting up the J-LiNK GDB SeIVeI .. .iuiiiiii it e i it i e e eaneeas 17
3.3 Setting UP G B ..t e 18
3.3.1 General GDB startup SEqUENCEciiiii i i e e 18
3.3.2 The .gdbinit file ..o e 18
3.3.3 [] 1T 5 19
3.4 Debugging on CorteX-M3 deViCeS ...iiiiriiiiiiiii i e e e as 20
3.4.1 DebUGGING IN RAM L. e 20
3.4.2 Debugging in flash ..o e 20
3.5 Supported remote COMMANAS. .. ittt i e et are e e aaneeas 22
3.5.1 Al OWSIMUIATION et e 23
3.5.2 (o o] o 1S 23
3.5.3 (o 0 3 1P 23
3.5.4 L= e L= o P 23
3.5.5 flash Breakpoints ..o e 24
3.5.6 Flash CPUCIOCK . .uiiitii i e e aaea e 24
3.5.7 flaSh AEVICE o 24
3.5.8 flash dOWNIOAd ... e 24
3.5.9 o o 24
3.5.10 = 25
3.5.11 = o = [o= 25
3.5.12 =T [o0 P 25
3.5.13 10 1 ' 25
3.5.14 L= 0 0L P 26
3.5.15 L= 0 0 L 26
3.5.16 L= 0.0 1 26
3.5.17 =T P 26
3.5.18 (=] g o] W< 0T o (P 27
3.5.19 =TT =] o 27
3.5.20 7] 1= oL o PP 30
3.5.21 SEMINOSEING ENAbDIE . . e 30
3.5.22 SEMINOSEING ARMS W .. .iiiii i e e e e r e rn e ar e rneanes 30
3.5.23 semihosting ThUumMbBD S W i it e e aaeaas 30
3.5.24 £ 0 o P 30
3.5.25] 1= o P 31
3.5.26] 011 P 31

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

3.5.27] = o 31
3.5.28 1T = 11 2 =1 PP 32
3.5.29 1272 <P 32
3.6 Command liN€ OPLIONS .. .viieiiii i aaas 33
3.6.1 (o PR 33
3.6.2 P 33
3.6.3 510 o 33
3.7 Running GDB extensions (Insight, Eclipse, etC.) ..coiviiiiiiiiiiiiiiees 34
3.7.1 1 1= Lo o | o PP 35
3.7.2 = 170 1= < 39
3.7.3 25T 1= (0 39
4 Flash download and Flash breakpointsooooiiiiiiiiiiiiii e 41
4.1 o] =7 [T 42
4.2 Enabeling flash download and flash breakpoints ..., 42
4.2.1 How to use the sample Projectsocviiiiiiiiiiii i e 42
5 USING DIGI @VAID0AITSeeiiiiiiiiiiiiieeeeee et 45
5.1 | L= | Y o= o =P 46
5.1.1 Copying .gdbinit filles . e e 46
5.2 Compiling the board support package (BSP) ...ccviiiiiiiiiiiiiiiiccicci i 47
5.3 Compiling the sample applicationccooviiiiiiiii 48
5.4 Setting up the GDB configuration filec.cooiiiiiiii i 48
5.5 Debugging the sample applicationccoiiiiiiiiiii e 49
IS0 o] o o] & APPSR 51
6.1 LI (o] 811 U=T=] g Lo o' T 52
6.1.1 (Y=l aT=T =1 I o] o Tol=Te U] o= 52
6.1.2 Typical problem SCENAMIOSuiiiii i i i e i e e i iee e aneeas 52
6.2 (@] g w=Tot o1 o I U] 5] Lo o A P 53
6.3 N © PP PP 53
A €1 011 o VRO PPRPPTPPRT 55
8 Literature and refErENCEScooiiiiiieeeiitt ettt e e e e e e e e e e e eeeaeeeranaee 57

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

Chapter 1

Introduction

This chapter gives a short overview about how to start debugging your hardware with
the GDB and the J-Link GDB Server.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

10

1.1 GDB / GDB Server overview

The GNU Project Debugger (GDB) is a freely available debugger, distributed under
the terms of the GPL. It connects to an emulator via a TCP/IP connection. It can con-
nect to every emulator for which a GDB Server software is available. The latest Unix
version of the GDB is freely available from the GNU commitee under:
http://www.gnu.org/software/gdb/download/

Introduction

GDB compatible
Debugger

P
GDB Server

GDB Server is a remote server for GDB. When you run GDB in the GDB source direc-
tory, it will read a .gdbinit file. The GDB .gdbinit file contains default setting
informations and additional monitor commands. GDB and GDB Server communicate
via a TCP/IP connection, using the standard GDB remote serial protocol. The GDB
Server translates the GDB monitor commands into J-Link commands.

1.2 Hardware requirements

To use J-Link GDB Server, you have to meet the following hardware requirements:

e PC running Win2K / XP / Vista
e USB port
e J-Link / J-Trace

1.3 Setup

The J-Link setup procedure required in order to work with the J-Link GDB Server is
described in chapter 2 of the J-Link User’s Guide. The J-Link User’s Guide is part of
the J-Link software package which is available for download under www.segger.com.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

11

Chapter 2

Licensing

This chapter describes the license management of the software.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

12 Licensing

2.1 Introduction

J-Link GDB Server is distributed as "free for evaluation and non commercial use".

The software can be used free of charge for educational and nonprofit purposes with-
out additional license. Without additional license, only 32 KBytes may be down-
loaded. To download bigger programs or to use the software for other, especially
commercial purposes, a license is required. With such a license, the download size is
not limited.

Free evaluation licenses are available upon request. To obtain an trial or unlimited
license, please contact sales@segger.com.

Full and valid license terms are specified in file License.txt which comes with the J-
Link software and documentation package.

SAM-ICE

J-Link GDB Server can be used free of charge without limitation of program size with
SAM-ICE.

2.2 License types

For the J-Link GDB Server, three types of licenses are available, which will be
explained in the following:

Built-in License

This type of license is easiest to use. The customer does not need to deal with a
license key. The software automatically finds out that the connected J-Link contains
the built-in license(s). This is the type of license you get if you order J-Link and the
license at the same time, typically in a bundle. Atmel’s SAM-ICE comes with a Built-in
license for J-Link GDB Server.

Key-based license

This type of license is used if you already have a J-Link, but want to enhance its func-
tionality by using J-Link GDB Server. In addition to that, the key-based license is
used for trial licenses. To enable this type of license you need to obtain a license key
from SEGGER. Free trial licenses are available upon request from www.segger.com
This license key has to be added to the GDB Server license management. How to
enter a license key is described in detail in section Entering a license key on page 13.
Every license can be used on different PCs, but only with the J-Link the license is for.
This means that if you want to use J-Link GDB Server with other J-Links, every J-Link
needs a license.

“Free evaluation and non commercial use” license

This type of license comes with J-Link GDB Server and is a license for educational
and nonprofit use of J-Link GDB Server. To use this license simply select Start in
free mode when the license dialog is opened. In this “free mode” the maximum pro-
gram size that can be downloaded with J-Link GDB Server is limited to 32 KBytes.

2.2.1 Built-in license

This type of license is easiest to use. The customer does not need to deal with a
license key. The software automatically finds out that the connected J-Link contains
the built-in license(s). To check what licenses the used J-Link have, simply open the
J-Link commander (JLink.exe). The J-Link commander finds and lists all of the J-
Link’s licenses automatically, as can be seen in the screenshot below.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

13

2.2.2 Key-based license

When using a key-based license, a license key is required in order to unlock the full
potential of J-Link GDB Server. License keys can be added via the J-Link GDB Server
license management. To open the J-Link GDB Server license management simply
select Licenses... from the Help menu in the main window. Like the built-in license,
the key-based license is only valid for one J-Link, so if another J-Link is used it needs
a separate license.

When using J-Link GDB Server and no license is found by the software, it will ask for
a license key.
2.2.2.1 Entering a license key

The J-Link GDB Server license management dialog shows the available licenses
and allows to add and remove licenses as well.

J-Link GDB Server License management E
Feature | Serial number | E xpiration |
Add license | Delete license | Dizplay gerial number |

Select Add license to enter a license key or Display serial number to get the serial
number of the connected J-Link. J-Link GDB server licenses are accorded on a one
per J-Link basis. This means that a license key is only valid for the J-Link with the
suitable serial number.

2.2.3 “Free evaluation and non commercial use“ license

When using the “free evaluation and non commercial use” license of J-Link GDB
Server, the program size which can be downloaded with the J-Link GDB Server is lim-
ited to 32 KBytes. To use this type of license J-Link GDB Server has to be started in
“free mode”. How to start J-Link GDB Server in “free mode” is explained in the fol-
lowing.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

14 Licensing

2.2.3.1 License dialog

A startup license dialog will be opened with every start of the J-Link GDB, if no addi-
tional license is installed.

J-Link GDB Server License B

Mo walid licenze for GDE Server found.
J-Link S/M is &

To obtain a license, please contact SEGGER Microcontroller
[segger.com, sales@segger.com)

Time limited trial versions are available.

Free mode

*r'ou may uze thiz software without add. license for
non-commercial or evaluation purpozes in free mode.

Irv thiz mode, program download size is limited to 32 KEytes.

If you are uging the software for one of these purposes,
pleaze click "Start in free mode"

Enter licenze | Start in free mode I Exit |

Select Start in free mode to start J-Link GDB Server with 32 Kbytes download limi-
tation or select Enter license to remove the limitation and deactivate the startup

dialog. If the J-Link GDB Server is started in free mode, a status message appears in
the log window.

Eerify download
Init regs on start

3. SEGGER J-Link GDB Server ¥3.78a [=
File Help
= : " r
Debugger IWaltlng far connection I Initial JTAG speed IBD kHz 'l I3
J-Link IEonnected |— Current JTAG speed |29 kHz I': IEIDaiP:DeIrizlaeads
m
m

Target [ARM7, Core Id: 0:3F0F0FDF] [326% [[Litle endian =]

Log output: Clear log

-
Listening on TCP/IP port 2331 _J

T-Link connected
Firmware: J-Link compiled Felr 20 2006 185:20:20 —- Mpdate ——
Hardware: V3.00
S/N: 405664

T-Link feound 1 JTAG dewvice, Tobal IRLen = 4
. JTAZ ID: Ox3FOFOFOF (ARM7)

Frese mods: Download size is limited to 22 KEByhbes.
To ke used for non-commercial and sevaluation purposss onlis.

1| | v

|D Bytes downloaded 1 ITAG device

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

15

Chapter 3
Debugging with GDB

This chapter describes the setup procedure required in order to use the GDB with the
J-Link GDB Server.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

16

3.1

Debugging with GDB

Starting the J-Link GDB Server

Start the J-Link GDB Server by double-clicking the executable file. Connect a J-Link
to the host system, as described in chapter Installing the USB driver on page 10.

If a J-Link and target system is connected, the J-Link GDB Server should look similar
to the screenshot below.

3 SEGGER J-Link GDB Server ¥3.78a M= B |

File Help

Debugger I'W'aiting for connection I Initial JTAG speed |3E| kHz vI

[~ Logw
J-Link. IEDnnected I Cumrent JTAG speed IEEI kHz ||; EDQP:D file ;
Cache reads
Werify download

Target |ARMY, Caore |d: 0x3FOFOFOF 326 Little endian = I
I I I I I J [Init regs on start

|III Bytes downloaded |1 ITAG device |

3.1.1 User interface

The J-Link GDB Server’s user interface shows information about the debugging pro-
cess and the target connected via JTAG.

It shows:

IP address of host running debugger.

Connection status of J-Link.

Information about the target core.

Measured target voltage.

Bytes that have been downloaded

Status of target.

Log output of the J-Link GDB Server (optional, if Log output window is
checked).

Initial and current JTAG speed.

Target endianess.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

17

3.2 Setting up the J-Link GDB Server

Typically, most of the GDB setup is done from GDB via remote commands (monitor)
in the .gdbinit file. However it is also possible to do the setup manually via user

interface.
,;;-,'E: SEGGER J-Link GDB Server ¥3.78a M= E
File Help
v St t
Debugger I'W'aiting for connection I Initial JTAG speed |3|:| kHz vI E LDZ}';i:azIL
J-Lirk: IEDnnected |_ Current JTAG speed IEEI kHz E Eﬂaifzﬂefrlnlaeads
Target [8RM7. Core Id: 0:3F0FOFOF || [326V |1 [Litde endian = [~ Werify download
[Init regs on stark
Log output: wl

Listening @n TIOFR/IP port 2331

JT-Link conhecktad

Firmwarse: J-Link compiled Felk 20 2006 15:20:20 —- mMedat
Hardwar=s: W3 .00

SN doDood

JT—-Link found 1 JTAZ dewice, Tomkbal IRLen = 4
JTZ TD: COxIFOFOFOF [(ARMT)

Freas mode: Dowhload size is limited Ea 32 KEBEyvkbas.
To ke used for non-commercial and ewvaluatbtion purposses o |

-

4| | _’I_

|III Bytes downloaded |1 ITAG device | v

Via the Initial JTAG speed dropdown box the JTAG speed can be selected and with
the box below the endianess of the target can be set.

These two boxes will be grayed out while debugging, although their values can be
changed from the debugger console using remote commands.

Stay on top
Allows you to force a window to "stay on top" of the other windows.
Log window

The log window is only visible if the checkbox Log window is selected. The Log out-
put window shows all commands which the GDB sends to the GDBServer. The Log
output window is primarily usefull for troubleshooting.

Log to file

If the Log to file checkbox is selected, the GDBServer generates the log file
C:\JLinkGDB.1log.

Cache reads

Enables a memory read-ahead optimization which can speed up debugging.
Verify download

Verifies the program in the target after a download.

Init regs on start

Initializes target registers with good start values.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

18 Debugging with GDB

3.3 Setting up GDB

We assume that you already have a solid knowledge of the software tools
used for building your application (assembler, linker, C compiler) and espe-
cially the debugger and the debugger frontend of your choice. We do not
answer questions about how to install and use the choosen toolchain.

3.3.1 General GDB startup sequence

1. Sets up the command interpreter as specified by the command line.

2. Reads the init file (if any) in your home directory and executes all the commands
in that file.

3. Processes command line options and operands.

4. Reads and executes the commands from init file (if any) in the current working
directory. This is only done if the current directory is different from your home
directory.

5. Reads command files specified by the -x option.

6. Reads the command history recorded in the history file.

For more details about the GDB startup sequence refer to
http://www.gnu.org/software/gdb/documentation/.

3.3.2 The .gdbinit file

When you run the GDB an initialization file, called .gbdinit, is searched in the GDB
home directory. If the GDB finds a .gdbinit file, GDB executes all the commands in
that file.

It is a good approach to store the setup informations for the remote debugging ses-
sion in the .gdbinit file. Some sample files are supplied in the GDBInit folder of the
GDB Server installation directory. Choose the sample that best fits to your target
board, customize it and copy it into your GDB source directory.

You can use the .gdbinit_template as base for the implementation of new hard-
ware.

#

J-LINK GDB SERVER initialization

#

This connects to a GDB Server listening
for commands on localhost at tcp port 2331
target remote localhost:2331

Set JTAG speed to 30 kHz

monitor speed 30

Set GDBServer to big endian

monitor endian big

Reset the chip to get to a known state.
monitor reset

#
CPU core initialization (to be done by user)
#

Set the processor mode

monitor reg cpsr = 0xd3

Set auto JTAG speed

monitor speed auto

Setup GDB FOR FASTER DOWNLOADS

set remote memory-write-packet-size 1024

set remote memory-write-packet-size fixed

Load the program executable called "image.elf"
load image.elf

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

19

3.3.3 Running GDB

To start GDB enter gdb -se <NameOfYourProgram> in the console window. The option
-se followed by a file name specifies the file which is used as symbol file and execut-

able file for the debug session. GDB tries to load a .gdbinit file and executes all
commands in that file.

Zcygdrive/c/Y ourApplication M= 3

$ gdb ——version

GNU gdb 6.1

Copyright 2884 Free Software Foundation. Inc.

GDB iz free software,. covered by the GHU General Public License. and you are

welcome to change it andrsor distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty" for details.
Thiz GDB was configured as ""——host=i686-pc—cyguwin ——target=arm—elf".

$ gdb —sze image.elf

We advise to use our supplied.gdbinit files, if one that fits to your hardware is
available. The supplied .gdbinit files initializes the connection to J-Link GDB Server
with the default settings (J-Link GDB Server running on localhost (127.0.0.1), listen-
ing on port 2331), initializes the core and downloads the specified executable. The

last command in the supplied.gdbinit files, is the command to download your pro-
gram to the target.

After the download process has finished, you must start program execution with con-
tinue rather than run, as the program is already started.

You can stop the program by pressing control + c. A list of debugger commands can
be found by using the console command help.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

20 Debugging with GDB

3.4 Debugging on Cortex-M3 devices

J-Link GDB Server supports debugging on Cortex-M3 devices. Both, debugging in
RAM and flash are supported.

Flash download (FlashDL) and flash breakpoints (FlashBP) are also available but
require a separate license.

3.4.1 Debugging in RAM

When debugging in RAM on a Cortex-M3 device, the stack pointer (SP, R13) and pro-
gram counter (PC, R15) are not automatically set to the start values by most debug-
gers.

In order to debug an application in RAM, please ensure that PC and SP have correct
values before you start to debug the application.

Typically, the start of the vector is the start of the RAM area used for download. On
most devices, this is 0x20000000. This means that the initial value of the stack
pointer (SP) can be read from 0x20000000 and the initial value of the PC can be read
from 0x20000004.

To ensure that the stack pointer and the PC are initialized correctly you can set them
in the .gdbinit file as shown below.

Sample GDB init sequence

The following sample GDB init sequence should work on any Cortex-M3 device when
debugging in RAM:

#*‘k*‘k*‘k*‘k**********‘k‘k‘k*‘k‘k*****’k*’k*’k‘k*‘k‘k‘k‘k‘k*’k*’k*’k*’k

#

Connect to J-Link and debug application in flash on Cortex-M3
#

Download to flash is performed.

#

Connect to the J-Link gdb server
target remote localhost:2331
monitor speed 1000

load ST MB525_RAM.elf

Initializing PC and stack pointer
RAM_START_ADDR is at 0x20000000
monitor reg rl3 = (0x20000000)
monitor reg pc = (0x20000004)

3.4.2 Debugging in flash

When debugging in flash the stack pointer and the PC are set automatically when the
target is reset after the flash download.

Without reset after download, the stack pointer and the PC need to be nitialized cor-
rectly, typically in the .gdbinit file. The following sample GDB init sequence is for a
STM32.

Sample GDB init sequence

#***

#

Connect to J-Link and debug application in flash on Cortex-M3
#

no download is performed.

#

Connect to the J-Link gdb server

target remote localhost:2331

monitor speed 1000

Can not load into flash if device is not specified. load ST_MB525_FLASH.elf
Initializing PC and stack pointer

monitor reg rl3 = (0x00000000)

monitor reg pc = (0x00000004)

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

21

3.4.2.1 Download to flash

To enable download to flash, the device needs to be selected and flash download has
to be enabled; the license for download (FlashDL) is also required. For more informa-
tion, please refer to Enabeling flash download and flash breakpoints on page 42

Sample GDB init sequence

#***

#
Connect to J-Link and debug application in flash on Cortex-M3
#
#

Download to flash is performed.

=

Connect to the J-Link gdb server
target remote localhost:2331
monitor speed 1000

monitor flash device = STM32F103VB
monitor flash download = 1

load ST _MB525_FLASH.elf

Initializing PC and stack pointer
monitor reg rl3 = (0x00000000)
monitor reg pc = (0x00000004)

3.4.2.2 Flash breakpoints

Most Cortex-M3 devices offer 6 hardware breakpoints. Can be very conveniant for
debugging to have more than 6 breakpoints. Flash breakpoints are supported for
most popular Cortex-M3 devices.

To enable flash breakpoints, the device needs to be selected and flash breakpoints
have to be enabled; the license for download (FlashBP) is also required. For more
information, please refer to Enabeling flash download and flash breakpoints on
page 42.

#***
#
Connect to J-Link and debug application in flash on Cortex-M3
#
#

Download to flash is performed.

=

Connect to the J-Link gdb server
target remote localhost:2331
monitor speed 1000

monitor flash device = STM32F103VB
monitor flash breakpoints = 1
monitor flash download =1

load ST_MB525_FLASH.elf

Initializing PC and stack pointer
monitor reg rl3 = (0x00000000)
monitor reg pc = (0x00000004)

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

Debugging with GDB

3.5 Supported remote commands

J-Link GDB Server supports several remote commands from the GDB. This commands
can be used from within a .gdbinit file or the GDB console to initialize the target
board and to setup J-Link GDB Server specific parameters.

Remote command

Explanation

AllowSimulation Enables/Disables ARM instruction set simulation.
clrbp Removes an instruction breakpoint.

cpl5s Reads or writes from/to cp15 register.

endian Sets endianess of the target.

flash breakpoints

Enables/Disables flash breakpoints.

flash cpuclock

Sets the clock frequency the CPU is currently running with
(Required for correct operation of some flash algorithms).

flash device

Selects the target’s flash device.

flash download

Enables/Disables flash download.

go Starts the target CPU.

halt Halts the target CPU.

interface Selects the target interface which is used by J-Link
jtagconf Configures a JTAG scan chain with multiple devices on it.
long Reads or writes a word from/to given address.
memU8 Reads or writes a byte from/to given address.
memU16 Reads or writes a halfword from/to given address.
memU32 Reads or writes a word from/to given address.

reg Reads or writes from/to given register.

remoteport Changes the GDB server remote port.

reset Resets and halts the target CPU.

select Selects the way J-Link is connected to host system.

semihosting enable

Enables semi-hosting.

semihosting ARMSWI

Sets the SWI number used for semi-hosting in ARM mode.

semihosting Sets the SWI number used for semi-hosting in thumb mode.
ThumbSWI

setbp Sets an instruction breakpoint at a given address.

sleep Sleeps for a given time period.

speed Sets the JTAG speed of J-Link / J-Trace.

step Performs one or more single instruction steps.

waithalt Waits for target to halt code execution.

wice Writes to given IceBreaker register.

Table 3.1: GDB remote commands

GDB sends the remote commands to the GDB Server. Remote command are what fol-
lows the GDB command monitor on the same line. If for example you want to start
the target CPU, you have to either enter monitor go in the GDB console window or
include this line in the .gdbinit file.

J-Link ARM GDB Server (UM08005)

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

23

3.5.1 AllowSimulation
Syntax

AllowSimulation <Value>

Description
Enables or disables ARM instruction set simulation.

Example

monitor AllowSimulation 1 // Enables ARM instruction set simulation
monitor AllowSimulation 0 // Disables ARM instruction set simulation

3.5.2 clrbp
Syntax

ClrBP [<BPHandle>]

or
cl [<BPHandle>]

Description

Removes an instruction breakpoint, where <BpHandle> is the handle of breakpoint to
be removed. If no handle is specified this command removes all pending breakpoints.

Example

monitor clrbp 1

or

monitor ci 1

3.5.3 cpi15
Syntax

cpl5 <CRn>, <CRm>, <opl>, <op2> [= <data>]
Description

Reads or writes from/to cpl5 register. If <data> is specified, this command writes the
data to the cpl5 register. Otherwise this command reads from the cpl5 register. For
further information please refer to the ARM reference manual.

Example

Read: monitor cpl5 1, 2, 6, 7 // Read
Write: monitor cpl5 1, 2, 6, 7 = OXFFFFFFFF // Write

3.5.4 endian
Syntax

endian <endianess>

Description

Sets endianess of target, where <endian> can either be big or 1ittle. Example
monitor endian little

Additional information

By default, the GDB server is configured to use big endianess.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

24 Debugging with GDB

3.5.5 flash breakpoints
Syntax

monitor flash breakpoints = <Value>
Description
This command enables/disables the flash breakpoints feature.

Example

monitor flash breakpoints
monitor flash breakpoints

1 // Enable flash breakpoints
0 // Disable flash breakpoints

3.5.6 flash cpuclock
Syntax

flash cpuclock = <Value>
Description

Sets the CPU clock frequency the CPU is currently running with. <value> is given in
Hertz (Hz). Some flash algorithms require the current CPU clock frequency for correct
flash programming operation, but on some cores the current CPU clock speed can not
be measured by the flash algorithm so it is necessary to set it manually.

Example

monitor flash cpuclock = 12000000 // Tells the flash algo that
// the CPU is running at 12 MHz

3.5.7 flash device
Syntax

flash device = <DeviceID>
Description

Selects the target’s flash device. The flash device is selected by it's device identifier.
For more information about the supported device identifiers, please refer to the J-
Link / J-Trace User Guide chapter Flash programming and flash breakpoints.

Example

monitor flash device = AT91SAM7S256

3.5.8 flash download
Syntax

monitor flash download = <Value>
Description
This command enables/disables the flash download feature.

Example

1 // Enables flash download
0 // Disables flahs download

monitor flash download
monitor flash download

3.5.9 go
Syntax
go

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

25

Description
Starts the target CPU.
Example

monitor go

3.5.10 halt

Syntax

halt

Description

Halts the target CPU.
Example

monitor halt

3.5.11 interface
Syntax

interface JTAG | SWD
Description

Selects the target interface which is used by J-Link. Currently JTAG and SWD are
supported.

Example

monitor interface SWD // Selects SWD as target interface

3.5.12 jtagconf
Syntax

jtagconf <IRPre> <DRPre>
Description

Configures a JTAG scan chain with multiple devices on it. <IRPre> is the sum of
IRLens of all devices closer to TDI, where IRLen is the number of bits in the IR
(Instruction Register) of one device. <DRPre> is the number of devices closer to TDI.
For more detailed information of how to configure a scan chain with multiple devices
please refer to the J-Link ARM User’s Guide.

Example

monitor jtagconf 4 1

3.5.13 long
Syntax

long <address> [= <value>]
Description

Reads or writes from/to given address. If <value> is specified, this command writes
the value to the given address. Otherwise this command reads from the given
address. This command is similiar to the WriteU32 command. Refer to memU32 on
page 26 for more information.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

26

Debugging with GDB

Example

monitor long 0x50000000 // Read
monitor long 0x50000000 = OxXFFFF // Write

3.5.14 memUS8

Syntax
MemU8 <address> [= <value>]
Description

Reads or writes a byte from/to a given address. If <value> is specified, this com-
mand writes the value to the given address. Otherwise this command reads from the
given address.

Example

monitor memU8 0x50000000 // Read
monitor memU8 0x50000000 = OxXFF // Write

3.5.15 memU16

Syntax
memUl6 <address> [= <value>]
Description

Reads or writes a halfword from/to a given address. If <value> is specified, this com-
mand writes the value to the given address. Otherwise this command reads from the
given address.

Example

monitor memUl6 0x50000000 // Read
monitor memUl6 0x50000000 = OxXFFFF // Write

3.5.16 memU32

Syntax
MemU32 <address> [= <value>]
Description

Reads or writes a word from/to a given address. If <value> is specified, this com-
mand writes the value to the given address. Otherwise this command reads from the
given address. This command is similar to the long command. Refer to /ong on
page 25 for more information.

Example

monitor MemU32 0x50000000 // Read
monitor MemU32 0x50000000 = OxXFFFFFFFF // Write

3.5.17 reg
Syntax
reg <RegName> [= <value>]
or
reg <RegName> [= (<address>)]

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

27

Description

Reads or writes from/to given register. If <value> is specified, this command writes
the value into the given register. If <address> is specified, this command writes the
memory content at address <address> to register <rRegName>. Otherwise this com-
mand reads the given register.

Example

monitor reg pc = 0x00
monitor reg cpsr = 0x1F
monitor reg r0 = (0x40)
monitor reg pc = (0x100)

3.5.18 remoteport
Syntax

remoteport <port>
Description
Changes the port an which the GDB server listens for connections.

Example

monitor remoteport 8000

3.5.19 reset
Syntax

reset [<ResetType>]
Description

Resets and halts the target CPU using the given reset type. If no reset type is speci-
fied, the reset type 0 ("Normal") will be used.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

28 Debugging with GDB

Add. information

The following reset types are available:

Reset type Explanation

Normal (default if no reset type is specified)

The hardware RESET pin is used to reset the CPU. After reset
release, J-Link continuously tries to halt the CPU. This typically
halts the CPU shortly after reset release; the CPU can in most
systems execute some instructions before it is halted.

The number of instructions executed depends primarily on the

0 JTAG speed: the higher the JTAG speed, the faster the CPU can
be halted. Some CPUs can actually be halted before executing
any instruction, because the start of the CPU is delayed after
reset release.

If a pause has been specified, J-Link waits for the specified time
before trying to halt the CPU. This can be useful if a bootloader
which resides in flash or ROM needs to be started after reset.
Breakpoint @0

The hardware RESET pin is used to reset the CPU. Before doing
so, the ICE breaker is programmed to halt program execution at
address 0; effectively a breakpoint is set at address 0. If this
strategy works, the CPU is actually halted before executing a sin-
gle instruction. This reset strategy does not work on all systems
for two reasons:

1 a) if nRESET and nTRST are coupled, either on the board or the
CPU itself, reset
clears the breakpoint, which means the CPU is not stopped
after reset.
b) Some MCUs contain a bootloader program (sometimes called
kernel), which
needs to be executed to enable JTAG access.
Analog Devices
The following sequence is executed:
- The CPU is halted
- A soft reset sequence is downloaded to RAM
> - A breakpoint at 0 is set

- The soft reset sequence is executed
This sequence performs a reset of CPU and peripherals and halts
the CPU before executing instructions of the user program. It is
recommended reset sequence for Analog Devices ADuC7xxx
MCUs and works with these chips only.
3 No reset is performed. Nothing happens.
Halt @watchpoint
The hardware RESET pin is used to reset the CPU. After reset
release, J-Link continuously tries to halt the CPU. This typically
halts the CPU shortly after reset release; the CPU can in most
systems execute some instructions before it is halted.
The number of instructions executed depends primarily on the
JTAG speed: the higher the JTAG speed, the faster the CPU can
be halted. Some CPUs can actually be halted before executing
any instruction, because the start of the CPU is delayed after
reset release.

Table 3.2: Reset types

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

29

Reset type Explanation

Halt @DBGRQ
The hardware RESET pin is used to reset the CPU. After reset
release, J-Link continuously tries to halt the CPU. This typically
halts the CPU shortly after reset release; the CPU can in most

5 systems execute some instructions before it is halted.
The number of instructions executed depends primarily on the
JTAG speed: the higher the JTAG speed, the faster the CPU can
be halted. Some CPUs can actually be halted before executing
any instruction, because the start of the CPU is delayed after
reset release.
Software reset.
Sets the CPU registers to their after-Reset values:
PC=0

6 CPSR = 0xD3 (Supervisor mode, ARM, IRQ / FIQ disabled)
All SPSR registers = 0x10
All other registers (which are unpredictable after reset) are set to
0.
The hardware RESET pin is not affected.

7 Reserved.
Software, for ATMEL AT91SAM7 MCUs.
The reset pin of the device is per default disabled. This means
that the reset strategies which rely on the reset pin (low pulse on
reset) do not work per default. For this reason a special reset
strategy has been made available.

8 It is recommended to use this reset strategy. This special reset
strategy resets the peripherals by writing to the
RSTC_CR register. Resetting the peripherals puts all peripherals in
the defined reset state. This includes memory mapping register,
which means that after reset flash is mapped to address 0. It is
also possible to achieve the same effect by writing 0x4 to the
RSTC_CR register located at address Oxfffffd00.

Table 3.2: Reset types
Example

monitor reset
monitor reset 1

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

30 Debugging with GDB

3.5.20 select
Syntax

select USB

or

select IP = <hostname>

Description

Selects the way J-Link / J-Trace is connected to the host system.

Example

monitor select USB
monitor select IP = localhost

3.5.21 semihosting enable
Syntax

semihosting enable [<VectorAddr>]
Description

Enables semi-hosting with the specified vector address. If no vector address is spec-
ified, the SWI vector (at address 0x8) will be used.

Example

monitor semihosting enable

3.5.22 semihosting ARMSWI
Syntax

semihosting ARMSWI <Value>
Description

Sets the SWI number used for semi-hosting in ARM mode. The default value for the
ARMSWI is 0x123456.

Example

monitor semihosting ARMSWI 0x123456

3.5.23 semihosting ThumbSWI
Syntax

semihosting ThumbSWI <Value>
Description

Sets the SWI number used for semi-hosting in thumb mode. The default value for the
ThumbSWI is OxAB

Example

monitor semihosting ThumbSWI O0xAB

3.5.24 setbp
Syntax

setbp <Addr> [<Mask>]

or

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

31

bi <Addr> [<Mask>]
Description

Sets an instruction breakpoint at the given address, where <Mask> is the address
mask to be used. If no mask is specified a default mask of 0x03 is used (matches for
breakpoints on ARM instructions). For breakpoints on THUMB instructions a mask of
0x01 should be specified.

Example

monitor setbp 0x00
monitor setbp 0x100 0x01

3.5.25 sleep
Syntax

sleep <Delay>
Description
Sleeps for a given time, where <Delay> is the time pediod in milliseconds to delay.

Example

monitor sleep 1000

3.5.26 speed
Syntax

speed <kHz>|auto|adaptive
Description

Sets the JTAG speed of J-Link / J-Trace. Speed can be either fixed (in kHz), automatic
recognition or adaptive. In general, Adaptive is recommended if the target has an
RTCK signal which is connected to the corresponding RTCK pin of the device (S-cores
only). Refer to J-Link / J-Trace User Manual for detailed information about the differ-
ent modes.

Example

monitor speed 1000
monitor speed auto
monitor speed adaptive

3.5.27 step
Syntax

step [<NumSteps>]
or

si [<NumSteps>]
Description

Performs one or more single instruction steps, where <NumSteps> is the number of
instruction steps to perform. If <NumSteps> is not specified only one instruction step
will be performed.

Example

monitor step 3

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

32

3.5.28 waithalt

Syntax

waithalt <Timeout>
or

wh <Timeout>

Description

Waits for target to halt code execution,

period in milliseconds to wait.

Example

monitor waithalt 2000
or

monitor wh 2000

3.5.29 wice

Syntax

wice <RegIndex> <value>
or

rmib <RegIndex> <value>

Description

Debugging with GDB

where <Timeout> is the maximum time

Writes to given IceBreaker register, where <value> is the data to write.

Example

monitor wice 0x0C 0x100
or

monitor rmib 0x0C 0x100

J-Link ARM GDB Server (UM08005)

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

33

3.6 Command line options

You can use command line configuration options to start the J-Link GDB Server with a
configuration file or set the listening port of the J-Link GDB Server.

The configuration file can be used as an alternative to the gdbinit file. All commands
listed in Supported remote commands on page 22 can be used.

Sample configuration file

//

// J-LINK GDB SERVER Configuration file

//

// Set the listening port of GDB Server to tcp port 2331
port 2331

// Set JTAG speed to 30 kHz

speed 30

// Set GDBServer to little endian

endian little

// Reset the chip to get to a known state.
reset

3.6.1 -xc

Description

Starts the GDB server with a configuration file. The commands in the configuration
file will not be executed until a debugging session is started. The J-Link GDB Server
executes the commands specified in the configuration file with every start of a
debugging session.

Example

jlinkgdbserver -xc <YourConfigurationFile>

3.6.2 -x

Description

Starts the J-Link GDB server with a configuration file. In contrast to the -xc com-
mand line option runs the J-Link GDB Server the commands in the configuration file
once only direct after the start of the J-Link GDB Server.

Example

jlinkgdbserver -x <YourConfigurationFile>

3.6.3 -port

Description

Starts the GDB Server listening on a specified port. This option overrides the default
listening port of the J-Link GDB Server.

Example

jlinkgdbserver -port

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

34 Debugging with GDB

3.7 Running GDB extensions (Insight, Eclipse, etc.)

There are many extensions and graphical user interfaces for GDB available.

The range of products reaches from standalone implementations like GNU Insight
(http://sources.redhat.com/insight/), frontends like DataDisplayDebugger (DDD)
(http://www.gnu.org/software/ddd/) and IDEs like Eclipse (http://www.eclipse.org).

The J-Link GDB Server is tested with:

GDB version 6.1
Insight version 6.1
Eclipse version 3.2.0 and CDT version 3.1.0.

We appologize that you are familiar with all tools, which you use for the development
of your application. The following information should only help to to round out the
context in which the J-Link GDB Server can be used.

Note: We only support problems directly related to the J-Link GDB Server. Prob-
lems and questions related to your remaining toolchain have to be solved on your
own.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

3.7.1 Insight

35

Insight is a version of GDB that uses Tcl/Tk to implement a graphical user inter-face.
It is a fully integrated GUI, not a separate front-end program.

main.c - Source Window (- [O] x|
File Bun Miew Control Preferences Help
000 0E | sa80 8-18|ma | o ot ud
|main.c =] |main =] SOURCE |7
197 flendif]
198
199
288 #if BSP_POST_TEST
2, postResults = ncc_post();
282 if (postResults->ccode *= POST_PASSED)
203 {
204 HALedBlinkFailureCode{LED_2_POST_FAILURE, postResults->testCode, postResults->s
285 ¥
2086 #endif
207
2088 setupVectorTable(}; F* setup standard vector table=/
289 #ifdef BSP_ARM9
218 HAEnableMmuf} ;
211 #tendif
- 212 HABoardInit (); F= initialize the hardware =/
- 213 DDIFirstLevelInitialize(); f% let device drivers init their hardwa
214
- 215 HAGetAppCpp();
216
- 217 tx_kernel_enter{); F* Enter the ThreadX kKernel. =/
218 return 8; /= we never actually get here=x/f
- 219 }
4] | |
|Program not running. Click on run icon to start. | soe508c] 194

Refer to http://sources.redhat.com/insight/ for detailed information about Insight.

Note:

We only support problems directly related to the J-Link GDB Server. Prob-

lems and questions related to your remaining toolchain have to be solved on your

own.

J-Link ARM GDB Server (UM08005)

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

36 Debugging with GDB

3.7.1.1 Start a debug session with Insight and J-Link GDB Server

You can start a debug session with Insight in the following way:

Start Insight

Open your program in Insight.
Connect to J-Link GDB Server
Download your program to your target
Run and debug your program

Start Insight

Enter gdbtk in your console window to start Insight.

Open your program in Insight.

To open your program in Insight, choose File | Open and select the executable that
you want to debug.

Connect to J-Link GDB Server

Set the settings for the connection to J-Link GDB Server. Open the Target selection
dialog (File | Traget settings) and select GDBServer/TCP in the Target choice list.
Enter the IP address of the host which runs the J-Link GDB Server, for example local-
host (127.0.0.1) and select the port the server listens for connections. By default,
the server listens on port 2331.

Target Selection [%]

v Set breakpoint at 'main’

Connection _ _
Target |GDBser\ferﬂ'CP 5l I Set breakpoint at 'exit
Hostname: [localhost I~ Setbreakpoint at |
Fort: |2331 I~ Display Download Dialog

™ Use xterm as inferior's tty

< Fewer Options

— Run Cptions

Run hethod
 Run Program

v Attach to Target

I~ Download Program & Continue from Last Stop

Command to issue after attaching:

0K | Cancell Help |

You can insert additional commands, for example for the initialization of your target
core, in the textfield Commands to issue after attaching of the Target Selection
dialog.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

37

Choose Run | Connect to target to connect to your target via the J-Link GDB

Server.
main.c - Source Window M= 3
File | Bun Yiew Control Preferences Help
: L Z| =] i :I ‘
% Download Crl+Dr h & g6 a *J ‘ Find
[ma Bun R main =] SOURCE 7]
= Dizconnect
I HENMOLIT d
198
199
288 #if BSP_POST_TEST
2, postResults = ncc_post();
282 if (postResults->ccode *= POST_PASSED)
203
204 HALedBlinkFailureCode{LED_2_POST_FAILURE, postResults->testCode, postResults->s
285 ¥
2086 #endif
207
2088 setupVectorTable(}; F* setup standard vector table=/
289 #ifdef BSP_ARM9
218 HAEnableMmuf} ;
211 #tendif
- 212 HABoardInit (); F= initialize the hardware =/
- 213 DDIFirstLevelInitialize(); f% let device drivers init their hardwa
214
- 215 HAGetAppCpp();
216
- 217 tx_kernel_enter{); F* Enter the ThreadX kKernel. =/
218 return 8; /= we never actually get here=x/f
- 219 }
1 | |
|Program not running. Click on run icon to start. | soe508c] 194

Check the status of the connection to J-Link GDB Server. The Debugger status mes-

sage has changed to Connected

changed from red to green.

3. SEGGER J-Link GDB Server ¥3.78a

GDE

File Help

to

127.0.0.1 and the status field aside has

[[x]

Debugger IEonnected to127.0.0.1

J-Link IEonnected

[IniialJTAG speed [30kHz =]
|— Current JTAG speed IBD kHz

¥ Stay on top
¥ Log window
L i

Target [ARM?, Halted

Log output: Clear log

B[2V [ceeendan =

I~ Weirify download
I~ Init regs on start

Firmware:
Hardware:
S-H: 1

Featurei=):

V5. 30
RDI.

J-Link found 1 JTAG device. Total IRLen

JTAG ID: O=x3FOFOFOF (ARM7)
Connected to 127.0.0.1

Feading all registers
Fead 4 bytes @ addre=ss 0x00000238 (Data

K|

FlashBP. FlashDL. JFlash.

J-Link compiled Dec 03 2007 17:15:31 AEM Rev .5

GDB
4

OxE2422EED)

=

|D Bytes downloaded 1 JTAG device

J-Link ARM GDB Server (UM08005)

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

38

Debugging with GDB

Download your program to your target

To download your program, choose Run | Download. Afterwards, you can run and
debug your program on your target hardware.

INIT s - Source Window M= 3
File Hun “iew Control Preferences Help
AT DP|EAE S @B rFino: | oo el
[1HIT.s | |Reset_Handl x| ASSEHBLY =]
- Bx888a%2c <Reset_Handler_ROWM>: mov ra, 19 ; B8=13
- Bx808a938 <Reset_Handler_ ROM+L4>: orv ra, v, #128 ; Bx88
- Bx8088a%934 <{Reset_Handler_ ROM+8>: orv ra, v, #64 ; Bx40
- Bx8088a938 <Reset_Handler_ ROM+12>: nsy CPSR_fc, r@
- Bx888a%3c <Reset_Handler_ ROM+163: 1ldr r@, [pc, #708] ; Ox800acO8 <START+8>
- Bx8088a%48 <{Reset_Handler_ ROWM+28>: 1ldr ra, [rB]
- Bx8088a%44 <{Reset_Handler_ ROM+24>: and ra, v, #-16777216 ; Bxffo00000
- Bx8088a%48 <Reset_Handler ROM+28>: mov rA, v, 1sr #24
B @x888a%4c <Reset_Handler ROM+323: cmp FA, #40 ; 0228
- Bx8088a958 <Reset_Handler_ ROM+36>: bge 8x80808a994 <done_pll>
- Bx8088a954 <{Reset_Handler_ ROM+L48>: 1ldr r@, [pc, #684] ; Ox800acO8 <START+8>
- Bx8088a958 <Reset_Handler_ ROM+L44>: 1ldr ra, [rB]
- Bx888a%5c <Reset_Handler_ ROM+483: and ra, v, #-16777216 ; Bxffo00000
B (x800a%68 <Reset_Handler_ ROM+52>: nov v8, r8, 1lsr #22
- Bx8088a%64 <{Reset_Handler_ ROM+563: 1ldr r1, [pc, #672] ; Ox800acBc <START+12>
- Bx8088a%68 <Reset_Handler_ ROM+68>: add ra, r@, ri
- Bx888a%6c <Reset_Handler_ ROM+6L4>: 1ldr ra, [rB]
- Bx8088a%978 <Reset_Handler_ ROM+68>: 1ldr r1, [pc, #664] ; Ox8008ac1@ <START+16>
- Bx8088a%74 <{Reset_Handler_ ROM+72>: str ra, [r1]
- Bx8088a%978 <Reset_Handler_ ROM+76>: 1ldr r5, [pc, #668] ; Ox8008ac14 <START+28>
- Bx888a%7c <Reset_Handler_ ROM+88>: 1ldr r6, [r5]
- Bx808a988 <Reset_Handler_ ROM+8L4>: orv rh, v6, 1073741824 ; 6x40000000
- Bx8088a984 <{Reset_Handler_ ROM+88>: str rh4, [r5]
- Bx800a988 <Reset_Handler_ ROM+92>: mov ra, #6384 ; BxuB08
|Program stopped at 0x800a94¢ 880a%4c| 262

Using .gdbinit files

If you use one of our supplied .gdbinit files, you can abbreviate this sequence. The
.gdbinit files initializes the connection to J-Link GDB Server with the default settings
(J-Link GDB Server running on Localhost, listening on port 2331), initialzes the core
and downloads the specified executable. We advise to use our supplied .gdbinit
files. To start Insight with a supplied .gdbinit file, choose the .gdbinit file that is
suitable for your target hardware, copy it to your project folder and start Insight
from your project folder with gdbtk -se <NameOfYourExecutable> and start debug-
ging.

Note: By default, GDB will send relatively small memory write packets during
download and reduces so the possible download speed. In the supplied .gdbinit files
is the memory-write-packet-size enlarged to 1024 bytes. This enlargement helps to
increase the download speed and should not lead to problems with your target hard-
ware. Therefore, ignore the warning from the GDB and select Yes in the dialog.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

39

3.7.2 Eclipse

Eclipse is an open source platform-independent software framework, which has typi-
cally been used to develop integrated development environment (IDE). Therefore
Eclipse can be used as C/C++ IDE, if you extend it with the CDT plug-in (http://
www.eclipse.org/cdt/).

CDT means "C/C++ Development Tooling" project and is designed to use the GDB as
default debugger and works without any problems with the J-Link GDB Server.

& Debug - cstartup.c - Eclipse SDK M [=] 3
File Edt Refactor Mavigste Search Project Bun window Help
[- (& |- OG- [s |- Fe el E | 45 Debug
[€ estartup.e 53 E'ED_rCPXi M|H‘M‘=ﬁ
59 TRQ Handler () ; = " 7
60 FIQ_Handler(): HETDOUT *= 0x80000001; #/ HET31. No operatians to display at this time.
61f3 0x00000160 <wain+l00>: wvn r2, #524268 ; Oxi
62 0x00000164 <waintl04>: sub r2, rz, #960 : Ox
Givoid ResetHandler (void) 0x00000168 <wain+lD8>: sub r2, rz, #3 ; 0x3
64t 0x0000016c <maintll2>: mvn r3, $524268 : Ox
65 //Disable peripheral access violation, memory ace 0x00000170 <wain+ll6>: sub r3, r3, #960 : Ox
66 //and illegal address reset 0x00000174 <main+lz0>: sub r3, r3, 3 : Ox3
57 Hif O 0x00000178 <wain+lZd>: ldr r3, [r3)
65 SYSECR = RESETO + PACCOVR + ACCOVR + ILLOVR: 0x0000017c <waintlZS>: eor r3, r3, #-214748364
69 J 0x00000160 <wain+l3z>: str r3, [r2)
700 /¢ Flash iz 256K at Dx00000000 is einitialized as for (i = 0:; i < 100000; i++):
71 // hetivate Flash at Ox00000000 that is connected [0x00000164 <wain+l36s=: mwov r3, #0 ; Ox0
72| // set size to Z5EKB, enasble read-only protection 0x00000188 <main+l40>: str r3, [rll, #-16]
73 MFBALRO = BLOCK SIZE_256K: 0x0000016c <wain+tléds: b 0x15¢ <wain+160>
74 MFBAHRD = 0x00000000; 0x00000190 <maintl4S>: ldr r3, [rll, #-16]
75 0x00000194 <wain+l52>: add r3, r3, #1 ; Oxl
76 // De activate FLASH at 0x00000000 that is connec 0x00000198 <main+lS6>: str r3, [ril, #-16]
77 // set size to OKEB 0x0000019c <wain+l60>: ldr r2, [ril, #-16]
78 NFBAHR1 = 0x00000000; 0x000001a0 <waintlfd4>: mov r3, 99328 : Ox18400
75 MFBALRI = 0x00000000; 0x000001ad <wain+l68>: add r3, r3, #665 ; Ox
&0 0x000001a8 <waintl72>: add r3, r3, #3 : Ox3
51 // RAM is 12K at 0x00400000 is einitialized as fc 0x000001as <wain+l76»: cwp £z, 3
82| // hetivate RAN at 0x00400000 that is connected t 0x000001k0 <waintlS0s: hls 0x190 <main+l48>
&3| // set size to BEB 3
54 NFBAHRZ = 0x00000040; 0x000001b4 <waintlSds: b 0x160 <main+l00> | |
55 MFBALRZ = BLOCK SIZE_SK; - -
< _»l" 4 | O
%5 Debug 52 i3 CEEEE i» ¥ =0
B¢ Debug Flash [Embedded debug [Cygwin hosted GDE]
=& Embedded GDE [10/3/06 3:12 PM) [Suspendsd)
| Eof Thiead [0] (Suspended]
| = 1 main(] at \cpgdivetCAE clipseVw/orkspacehGIODD_Flashtmain. 139 0+00000184
s Debugger Process (10/3/06 312 PM)
Variables | Breakpaints Expressions| /e Projects | 5] Console 32 Tasks] wee | 2 B or -0
Debug Flash [Embedded debug [Cygin hosted GDEB)] Debugger Process (10/3/06 312 PM)
{section=".text", section-size="240", total-size="2044"} |
Wriring register (R15 (FC) = Ox00000000)
Wriring register (R15 (FC) = Ox00000000)
y o
T J

Refer to http://www.eclipse.org for detailed information about Eclipse.

Note: We only support problems directly related to the J-Link GDB Server. Prob-
lems and questions related to your remaining toolchain have to be solved on your
own.

3.7.3 Yagarto

The name Yagarto stands for “Yet another GNU ARM Toolchain”. Yagarto is an Eclipse
compatible native Windows toolchain and consists of several packages. Yagarto itself
is the GNU toolchain (Binutils, Newlib, GCC compiler, and the Insight debugger) and
Yagarto IDE is a compilation of Eclipse, CDT and an additional plug-in which improves
the support for GDB embedded debugging in CDT.

The maintainer of Yagarto offers also some sample projects for various ARM cores
and some tutorials for the work with Eclipse and the GNU ARM toolchain.

Refer to http://www.yagarto.de for detailed information.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

40 Debugging with GDB

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

41

Chapter 4

Flash download and Flash break-
points

This chapter describes how to use the J-Link flash download and Flash breakpoint
features with the GDB Server.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

42 Flash download and Flash breakpoints

4.1 Licensing

Flash download and flash breakpoints are features of the J]-Link software which
require separat licenses from SEGGER.

4.2 Enabeling flash download and flash breakpoints

To use flash download and flash breakpoints with the J-Link GDB Server you have to
enable them first. This is done by the remote commands flash device flash down-
load and flash breakpoints. For more information about the flash device command
please refer to chapter Supported remote commands on page 22. For example, if you
want to enable flash download and flash breakpoints for a Atmel AT91SAM7S256
device simply add the following three lines to the .gdbinit file:

monitor flash device = AT91SAM7S256
monitor flash download = 1
monitor flash breakpoints = 1

The J-Link GDB Server comes with sample projects for the most common flash micro-
controllers. The sample projects can be found at Samples\GDB\Projects of the
installation directory of the J-Link software and documentation package.

4.2.1 How to use the sample projects

First of all you have to choose an appropriate sample project for your device and
unzip it, into a directory of your choice. After unzipping the project you can start the
J-Link GDB Server.

2. SEGGER J-Link GDB Server ¥3.79t [beta) I B3
File Help
GDB IWaitin far connection I Initial JTAG speed IBD kH 'l ul
el 2 z i i
J-Link IEonnected |— Current JTAG speed IBD kHz I': g:g::::al;gme

Target [ARMS, Core I 025966081 || [230V [[Lite endian] [¥eriy download
I~ Init regs on start
Log output: M

SEGGER J-Linlk GDE Server Vi.79t (beta) :J

JLinkAEM. dll W3.79t (DLL compiled Feb 4 2008 15:07:14)
Listening on TCP/IP port 2331

J-Link connected

Firmware: J-Link compiled Dec 03 2007 17:15:31 AEREM Rew.
Hardware: V5.00

S/M: 81299890

J-Link found 3 JTAG devices, Total IRLen - 17
JTAG ID: 025966041 (ARM9)

v
1 | »

|D Bytes downloaded 3JTAG devices, [RLen=17 IRPre=8, DRPre=1 i

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

43

To start the sample project, simply start the Debug_Flash.bat file in the directory of
the sample project. The sample projects already include an executable
Debug_Flash.elf file so you don’t have to recompile the project. After starting the
debugger, the source windows should look as follows:

Start_LEDBlink.c - Source Window M= 3
File Hun “iew Control Preferences Help
C RV TRV RN PR R e [CTVE a— oo at
|start_LEDBlink.c =] |main | [source -~
31 Purpose : Sample program for 0S running on EVAL-boards with LEDs :J
32 - END-0F-HEADER 4
33
34
35 #include “RTOS.h"
36 #include “BSP.h"
a7
38 OS_STACKPTR int StackHP[128], StackLP[128]; F* Task stacks =/
39 DOS_TASK TCBHPF, TCBLP; /* Task-control-blocks =/
48
1
- 42 static void HPTask{void) {
43 while {1} {
- uy BSP_ToggleLED{@);
- 45 05_Delay (58);
- 46 ¥
47 3
48

- 49 static void LPTask{void) {
Y] while {1) {

- 51 BSP_ToggleLED(1);
- 52 0S_Delay (200);
- 53 H
5y
1
56 /F
57 =
58 = main
5O =
68 £
61
- 62 int main{void) {
63 0S_IncDI{); /+* Initially disable interrupts =/
- 64 0S_InitKern{); f= initialize 0% *f
- 65 0S_InitHuW(); F%= initialize Hardware for 08§ *f
- 66 BSP_Init(); /* initialize LED ports ®/
67 /= You need to create at least one task before calling 05_Start{) =/
- 68 0S_CREATETASK(&TCBHP, "HP Task™, HPTask, 188, StackHP};
- 69 0S5_CREATETASK(&TCBLP, "LP Task™, LPTask, 58, StackLP};
- F8 05_Start(); /* Start multitasking ®/
- 71 return 8;
- 72 3
73
|Program stopped at line 63 168 63

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

44

Flash download and Flash breakpoints

From now on you can set an unlimited number of breakpoints and debug through the
application. Below a sample screenshot for using Flash breakpoints when debugging

a sample project.

5, k -
Bla Bun Yaw [od Pwfwencer Help

Ba Hip

AU DR EAS0 8 B[|

Start LEDBLink.c =] |[HPTask =

e
[ouReE =]

I~ Siyeon ko
F Ghowkag parcices

08 [Comrmecadio 127001 | TR T |

a1 Purpose : Sample program for 05 running on EUAL-boards with LEDs
az EHD-0F-HEADER
a3
an
45 Sinclude "RTOS.h"
4 #include “BIP.R"
ar
A8 05_STACKPTR int StackHP[128), StackLP[12A];
a8 DE_TASK TCHHP, TCHLF;
LL]
1]
- 82 static uoid HPTask{uoidp {
83 while {1} {

= A REP Tniil#LEDq.r:.

- b}
AT }
ag
- B9 static woid LPTaskivoid} {
Ed while {1} {
BEF_TogolelEn{¥k;
- &2 05_Delay {28d);
bl 53]

/% Task stacks =/
#= Task-control-blocks =

w1
-
R

42 int main{uoidp §
63 0E_IncDI{k;
05 _Initkern};
65 05_InitHW b
af BEP_Init{p;

= Initially disable inkterrupts =7
d% initialize 05 Lrs
#= initialize Hardware For 0% L
4% initialize LED Enrts =

LB
=
-

= |

Tusget [SFHE, Haded Ir=v]

| me

Lral vmgr an chast:

-
= OmOOOO0000| =l
= OmOOOO00000|
= omonooonoo||
= OmOOOO0000|
= OxOOO00000|
(FPS = Nx000000003
(CPSE = OxS00000LF |

= O OO0onon
= O OO0onong

= O OO0onL 300
TROOD001I0 IDakta

= OAESEOECDd)
-
i | 3

|2dTi0 derviosd, Lol 7 FPwed DFFwa] 4

ety

Gdduzinz

Addregs [Cednpomn Al Tergetis LITTLE endien
n & & L3 [141

M BLAOO00N | Gx BeA00700 | GxBA0000 | Ge0LO00E00 | BeBeOO0TO0 |, 0000aaas

R AR A | s L [1| 0= [

L L L ftw
s = NOEEONON | QeSS0 | Mad 0S8
Prcdcdodod | Trodododod

J-Link ARM GDB Server (UM08005)

47 /= ¥ou need to create at least one bask bedore calling 05_Start{} s/
- A 05_GREATETASK{GTCEHF, “HF Task", HPTask, 188, StackiPj; ra
bl 68 OE_CREATETASK{BTCHLF, "LF Task™, LFTask, 5@, StackLPl; i
- 7@ 0S_Stare(}; #% Start multitasking =
- 71 return B rr
- 13} 3
k] -
i (= [l w_Tine (wslatile fat)
= rs [T
[Progrem stoppad at ine 45 [o w1 Wercoonune |
(L [[EEEE23 [T
= Thecooc NNNE
Breakpoint 4, main {3} at ApplicationsStart LEDBLlink.c:a3 -
(] [[EEEE 2 11
b} o
continuing. 8} SecocenSte |5 s kbl
i1 gL N Address File Line| Function
Breakpoint &, HPTask {} at Application/Start LEDBLink.c:ah e [T P e Start_LEDBLink.c 51 LPTagh
{gd} &
BEP_TogglelED {Index=8} at Setup/RSP.c:inn F 1 Start_LEDBlink.c Bh HPTask
HPTask (} at Application/Start LEDBlink.c:as
g 16R Start_LEDBlink.c &3 main
indb}
F fan Start_LEDBlink.c &6 main

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

45

Chapter 5
Using DIGI evalboards

This chapter describes the setup procedure required in order to debug DIGI boards
with the GDB and the J-Link GDB Server. This includes primarily the compilation rou-

tines and configuration hints for the DIGI sample applications. In this case we will
refer to the DIGI Connect ME hardware.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

46

5.1 Initial Steps

Using DIGI evalboards

First of all, please start the J-Link GDB Server by double-clicking the executable file.
You will see the J-Link GDB Server:

3 SEGGER J-Link GDB Server ¥3.78a M= B |

File Help

Debugger I'W'aiting for connection

J-Link, IEDnnected

<

l Iritial JTAG speedISD kHz =] I_ELDQ =i
Log.n

che reads

T arget I.-’-'-.FEM?, Core |d; 0=3F0FOFOF

=
| Curtent JTAG speed [23 kHz [~ Lagta file
v Ca
(=]

E
N [328V | [Citte endian =] I': 1:1

rify download
it reqz on ztart

|III Bytes downloaded

1 ITAG device |

5.1.1 Copying .gdbinit files

To make things easy, the J-Link GDB Server package contains ready-to-go *.gdbinit
files for the various DIGI boards.

In order to use these .gdbinit files with the DIGI boards and NET+Works GNU Soft-

ware, please copy the

* 41link files found in the GDBInit folder to $NETOS-

DIR%\debugger_files, which is per default c:\netos63_gnu\debugger_files\.

J-Link ARM GDB Server (UM08005)

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

47

5.2 Compiling the board support package (BSP)

After starting the Net+Works 6.3 Build Environment, you will find yourself in a Unix
like shell environment with a command prompt.

To compile the board support package (BSP), change to the bsp directory, which is
located under /cygdrive/c/netos63_gnu/src/bsp by using the cd command which
stands for "change directory".

cd src/bsp
To list the available BSPs, please use the following command:
1ls platforms/ -1

You will see a list of available platforms as shown in the screenshot below:

fecypgdrive/c/netosb3 gnuferc/bep =]
GHU H-Tools and Bash Shell ready...

Setting up Shell for arm—elf
arm—elf GHU H-Tools Shell Readwy...

% cd src/hsps

% 1s platformss -1
total 108
druscruce s+
drucrunaruct
druscruce st
druscruce s+
drucrunaruct
druxrucrus+
druscruce s+
drucrunaruct
PUXPLNE W+
PUXPUXCE WK+
druxcrunaruct

Administ connectcore?c_a
Administ connectem
Admini=zt connectme
Administ connectsp
Administ connectwiem

Administ connectwime
Administ net5@_d
Administ net5lhga_a
Administ ns7520_a
Administ ns?3660_a
Administ ns?7568_a

Dot [0 Dol (3 03 I B I B B D

Then compile the board support package (BSP) by using the make command. You will
have to specify for which target you want to compile the BSP. This is done by the
PLATFORM parameter and the clean all parameters to clean up the directories
before building the BSP library.

make PLATFORM=connectme clean all

After the BSP is built, your screen should look similar to the screenshot below.

fecypgdrive/c/netosb3 gnuferc/bep =]

sobis/32bsgnusconnectmesprof iler.o
.sobhjz- 32bs/gnu-sconnectmesna_init.o
<objs/32bs/gnusconnectmesINIT .o
.obhis/32b/gnusconnectmes I RGHAMD . o
.sobhjz- 32bsgnu-sconnectmesarmutils .o
Aohjs/32bsgnusconnectmescksum.o
.sobjz/32bhs/gnusconnectmesruncksum. o

. objz/32bhsgnusconnectmesIRQREG. o
.#ohjs/32bsgnusconnectme /getOuner.o
.sobjs/32bh/gnusconnectmesnainvalidate .o
.~ohjs- 32bhs/gnu connectmesnammnu.o
objs/32b/gnus/connectmesaddpconf _api.o
r — ./ohjss32b/gnusconnectmeshlExe .o

MAKE make PLATFORM=connectme EMDIAN=—mbig—endian PROCESSOR=arm? TOOLSETI=gnu CPU
FLAG=—mcpu=arm?tdmi DEBUG=off

Compressing blram.bin to blramzip.bin
Using LZS5S Encoder-Decode w2l

66116
35239
Compresz=sion ratio: 47«

5

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

48 Using DIGI evalboards

Now you can start to compile the sample application, which is described under Com-
piling the sample application on page 48.

5.3 Compiling the sample application

After building the BSP for your DIGI board, change to the /cygdrive/c/
netos63_gnu/src/apps/template/32b directory by using the following command:

cd /cygdrive/c/netos63_gnu/src/apps/template/32b

Then compile the sample project by using the make command. You will have to spec-
ify for which target you want to compile the sample project. This is done by the
PLATFORM parameter and the clean all parameters to clean up the directories
before building the BSP library.

make PLATFORM=connectme clean all

After the sample application is built, your screen should look similar to the screen-
shot below.

foygdrivefc/netozb3 _gnufsrc/appsz/template/32b |_ O] x|
Using LZS5S% Encoder~Decode (w2

Input bytes: 449792
Qutput hytes: 274558
Compreszion ratio: 39
e e e binAboothdy LAl L AL L/ L Ssre shepsplatforme Aconnectme sboot 1dr . dat imag)
g.compressed image.hin
rm image .compressed
Ausrshincsarm—elf—gce —o rom.elf .AobjsAsappconf_api.o .-sobjsAroot.o —mhig—end
ian —nostartfiles —mocpu=arm?tdmi
-T ../..7/../../sprcsheprsplatformesconnectmersrom.1d ../ ./ /. . librarm?-32b
Agnushspsconnectmesreset.o ../../. .. ./lib/arm?/32b/gnu hsps/connectme “mencpy.o
Ao s libs32h s gnnsertB oo S
Wl ——start—group-. . .. libsaprm?-32b /gnu-bzp-sconnectme-libbhsp.a
s A libarn P32 b Agnus LibEtpsvrla LWL AL LS. LAl bsarn P 3 2b s/ gnu A LibE lash.a
LS s librarn? A 32b/gnus libposdx.a Ll L. /. LA librarn P 32bgnus 1ibtx.a
o librarm?/32bsgnuslibdnsclnt.a ../ ./ /. ./ 1libsarm?-32b gnuslibfastip.a
A A libarn? A3 2bA/gnus Libaddp.a L. LS LS. LA 1ibAarn P 3 2hAgnus Libtepip.aa
-L ../../../..1ih/32bh/gnu —1lc —lgece —1m —lstde++ —W1.—end—group
-U1l.—Map.rom.map
susrshinAsarm—elf-nm —n rom.elf > rom.sym
susrshinAsarm—elf—objecopy —0 hinary rom.elf rom.hin

5

5.4 Setting up the GDB configuration file

The GDB will search for the .gdbinit file in the workspace folder, from where you
start the GDB out of. For this, you need to copy the init file, corresponding to your
board, from /cygdrive/c/netos63_gnu/debugger_files into your workspace folder.
This can easily be done by the following two commands:

cd /cygdrive/c/netos63_gnu/src/apps/template/32b

cp ./../../../../debugger_files/gdbconnectme.jlink ./.gdbinit

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

49

5.5 Debugging the sample application

To debug your sample application, change your directory to /cygdrive/c/
netos63_gnu/src/apps/template/32b.

cd /cygdrive/c/netos63_gnu/src/apps/template/32b

Start the GNU Project Debugger (GDB) with the compiled sample project by typing
gdbtk -se image.elf

into the NET+Works 6.3 Build Environment.
The GDB will ask, if you would like to change the packet size. Select Yes.
GDB I

The target may nok be able ko correctly handle a memory-write-packet-size
of 1024 bytes, Change the packet size?

Yes

After this, GDB starts to download the sample application into the target. When the
download is finished, you can debug through the application.

For further information please refer to the GDB documentation, which is freely avail-
able from the GNU commitee under:

http://www.gnu.org/software/gdb/documentation/

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

50 Using DIGI evalboards

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

51

Chapter 6
Support

This chapter contains troubleshooting tips together with solutions for common prob-
lems which might occur when using J-Link / J-Trace. There are several steps you can

take before contacting support. Performing these steps can solve many problems and
often eliminates the need for assistance.

Further instructions are explained in the J-Link / J-Trace User’s Guide.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

52

6.1
6.1.1

Support

Troubleshooting

General procedure

If you experience problems with a J-Link / J-Trace, you should follow the steps below
to solve these problems:

aounhwWNRE

10.
11.
12.
13.

14.

15.

6.1.2

Close all running applications on your host system.

Disconnect the J-Link / J-Trace device from USB.

Power-off target.

Re-connect J-Link / J-Trace with host system (attach USB cable).

Power-on target.

Try your target application again. If the problem vanished, you are done; other-
wise continue.

Close all running applications on your host system again.

Disconnect the J-Link / J-Trace device from USB.

Power-off target.

Re-connect J-Link / J-Trace with host system (attach USB cable).

Power-on target.

Start JLink. exe.

If JLink.exe reports the J-Link / J-Trace serial number and the target processor’s
core ID, the J-Link / J-Trace is working properly and cannot be the cause of your
problem.

If JLink.exe is unable to read the target processor’s core ID you should analyze
the communication between your target and J-Link / J-Trace with a logic analyzer
or oscilloscope. Follow the instructions in section 9.2 in the J-Link / J-Trace User’s
Guide.

If your problem persists and you own an original product (not an OEM version),
see section Contacting support on page 53.

Typical problem scenarios

J-Link / J-Trace LED is off

Meaning:

The USB connection does not work.

Remedy:

Check the USB connection. Try to re-initialize J-Link / J-Trace by disconnecting and
reconnecting it. Make sure that the connectors are firmly attached. Check the cable
connections on your J-Link / J-Trace and the computer. If this does not solve the
problem, please check if your cable is defective. If the USB cable is ok, try a different

PC.

J-Link / J-Trace LED is flashing at a high frequency

Meaning:

J-Link / J-Trace could not be enumerated by the USB controller.

Most likely reasons:

a.) Another program is already using J-Link / J-Trace.

b.) The J-Link USB driver does not work correctly.

Remedy:

a.) Close all running applications and try to reinitialize J-Link / J-Trace by disconnect-
ing and reconnecting it.

b.) If the LED blinks permanently, check the correct installation of the J-Link USB
driver. Deinstall and reinstall the driver as shown in chapter Setup on page 9.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

53

J-Link/J-Trace does not get any connection to the target
Most likely reasons:

a.) The JTAG cable is defective

b.) The target hardware is defective

Remedy:

Please follow the steps described in section 9.1.1 in the J-Link / J-Trace User’s Guide.

6.2 Contacting support

Before contacting support, make sure you tried to solve your problem by following
the steps outlined in section “"General procedure” in the J-Link / J-Trace User’s Guide.
You may also try your J-Link / J-Trace with another PC and if possible with another
target system to see if it works there. If the device functions correctly, the USB setup
on the original machine or your target hardware is the source of the problem, not J-
Link / J-Trace.

If you need to contact support, please send the following information to
support@segger.com:

A detailed description of the problem.

J-Link/J-Trace serial humber.

Output of JLink.exe if available.

Your findings of the signal analysis.

Information about your target hardware (processor, board etc.).

J-Link / J-Trace is sold directly by SEGGER or as OEM-product by other vendors. We
can support only official SEGGER products.

6.3 FAQ

Q: Which CPUs are supported?
A: Every CPU supported by J-Link / J-Trace is supported.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

54 Support

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

55

Chapter 7

Glossary

This chapter explains important terms used throughout this manual.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

56

Glossary

Big-endian

Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See Little-endian.

Cache cleaning

The process of writing dirty data in a cache to main memory.

GDB

A GNU Project Debugger that is freely available.

Host

A computer which provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

ICache

Instruction cache.

Image

An executable file that has been loaded onto a processor for execution.

Joint Test Action Group (JTAG)

The name of the standards group which created the IEEE 1149.1 specification.
Little-endian

Memory organization where the least significant byte of a word is at a lower
addressthan the most significant byte. See also Big-endian.

Target

The actual processor (real silicon or simulated) on which the application program
isrunning.

Watchpoint

A location within the image that will be monitored and that will cause execution to
stop when it changes.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

57

Chapter 8

Literature and references

This chapter lists documents, which we think may be useful to gain deeper under-
standing of technical details.

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

58 Literature and references

Reference Title Comments
This document describes the GDB
[GDB] GDB Documentation Server usage in detail.

It is publicly available from the GNU
commitee (www.gnu.org).
This document describes the J-Link

O § , . / J-Trace debug interfaces in detail.
[JUG] J-Link / J-Trace User’s Guide It is publicly available from SEGGER
(www.segger.com).

Table 8.1: Literature and reference

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

59

IndeXx

B

Big-endian ... 56

C

Cache cleaningccooviiiiiiiiiiiiiiiiicieen, 56

Command line optionsccovvivviiiiiinnen. 33

E

EClipSE wiviiiiii i 39

G

GDB i 56
gdbinit .. 18
EXteNSIONS oot e 34
Insight ..o 35
startup sequencecoviiiiiiiiiiieee 18

H

HOSE oo e 56

I

ICache i 56

Image .o 56

J

J-Link GDB Servercovieviiiiieiinninennens 10
User interfacecccoviviiiiiiiiiiinnnnnns 16

Joint Test Action Group (JTAG) 56

L

Little-endianc.ocoviiiiiiiii e 56

S

Server command
AllowSimulationcccoviiiiiiiii 23
Clrbp 23
CP1S i 23
ENAIAN i 23
flash breakpointsccccvviviiiiiniinnnnnn, 24

J-Link ARM GDB Server (UM08005)

flash cpuclockcovviiiiii 24
flash device ...cciiiiiiiiiiiii 24
flash downloadccovviiiiiiiiininnnns 24
o Lo T 24
halt .o 25
iNterfaceoooviiiviiiiiic i 25
jtageonf .o 25
ONG e 25
MeMULE ..o 26
MEMU32 o 26
MEeMUS ..o 26
T 26
remoteport ... 27
FESEE ittt e 27
select .o 30
SEtBP e 30
SIEED i 31
SPEEA it 31
SEEP i 31
waithalt ... 32
WICE ittt ittt re e eaaeeeas 32

Server commands ...ccviiviiiiiiiiei s 22

SUPPOIT i e 55

Syntax, conventions usedccoeviinnnn 5

T

Target oo 56

w

Watchpointcoviiiiiiii 56

Y

YagartO .ooveieiiiiii e 39

© 2004-2009 SEGGER Microcontroller GmbH & Co. KG

60 Index

J-Link ARM GDB Server (UM08005) © 2004-2009 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction
	1.1 GDB / GDB Server overview
	1.2 Hardware requirements
	1.3 Setup

	Licensing
	2.1 Introduction
	2.2 License types
	2.2.1 Built-in license
	2.2.2 Key-based license
	2.2.2.1 Entering a license key

	2.2.3 “Free evaluation and non commercial use“ license
	2.2.3.1 License dialog

	Debugging with GDB
	3.1 Starting the J-Link GDB Server
	3.1.1 User interface

	3.2 Setting up the J-Link GDB Server
	3.3 Setting up GDB
	3.3.1 General GDB startup sequence
	3.3.2 The .gdbinit file
	3.3.3 Running GDB

	3.4 Debugging on Cortex-M3 devices
	3.4.1 Debugging in RAM
	3.4.2 Debugging in flash
	3.4.2.1 Download to flash
	3.4.2.2 Flash breakpoints

	3.5 Supported remote commands
	3.5.1 AllowSimulation
	3.5.2 clrbp
	3.5.3 cp15
	3.5.4 endian
	3.5.5 flash breakpoints
	3.5.6 flash cpuclock
	3.5.7 flash device
	3.5.8 flash download
	3.5.9 go
	3.5.10 halt
	3.5.11 interface
	3.5.12 jtagconf
	3.5.13 long
	3.5.14 memU8
	3.5.15 memU16
	3.5.16 memU32
	3.5.17 reg
	3.5.18 remoteport
	3.5.19 reset
	3.5.20 select
	3.5.21 semihosting enable
	3.5.22 semihosting ARMSWI
	3.5.23 semihosting ThumbSWI
	3.5.24 setbp
	3.5.25 sleep
	3.5.26 speed
	3.5.27 step
	3.5.28 waithalt
	3.5.29 wice

	3.6 Command line options
	3.6.1 -xc
	3.6.2 -x
	3.6.3 -port

	3.7 Running GDB extensions (Insight, Eclipse, etc.)
	3.7.1 Insight
	3.7.1.1 Start a debug session with Insight and J-Link GDB Server

	3.7.2 Eclipse
	3.7.3 Yagarto

	Flash download and Flash breakpoints
	4.1 Licensing
	4.2 Enabeling flash download and flash breakpoints
	4.2.1 How to use the sample projects

	Using DIGI evalboards
	5.1 Initial Steps
	5.1.1 Copying .gdbinit files

	5.2 Compiling the board support package (BSP)
	5.3 Compiling the sample application
	5.4 Setting up the GDB configuration file
	5.5 Debugging the sample application

	Support
	6.1 Troubleshooting
	6.1.1 General procedure
	6.1.2 Typical problem scenarios

	6.2 Contacting support
	6.3 FAQ

	Glossary
	Literature and references
	Index

