
APPLE IN-APP PURCHASES

MANUAL

Contents

Introduction 2

The Asynchronous IAP Event 3

Extension Functions 4

Validation 5

ios_iap_Init / mac_iap_Init 6

ios_iap_IsAuthorisedForPayment / mac_iap_IsAuthorisedForPayment 7

ios_iap_AddProduct / mac_iap_AddProduct 8

ios_iap_QueryProducts / mac_iap_QueryProducts 10

ios_iap_QueryPurchases / mac_iap_QueryPurchases 13

ios_iap_PurchaseProduct / mac_iap_PurchaseProduct 16

ios_iap_ValidateReceipt / mac_iap_ValidateReceipt 20

ios_iap_RestorePurchases / mac_iap_RestorePurchases 21

ios_iap_FinishTransaction / mac_iap_FinishTransaction 25

ios_iap_GetReceipt / mac_iap_GetReceipt 26

ios_iap_RefreshReceipt 27

mac_iap_exit 29

RegisterCallbacks 30

1 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Introduction

This PDF manual is designed for you to use as a reference to the different Apple IAP (In App
Purchase) functions for iOS, tvOS and macOS, and as such does not contain tutorials on how to set up
the API in your games. If you wish information on setting up, general use, etc… then please see the
following YoYo Games Knowledge Base articles:

● iOS and tvOS: Using The IAP Extension

● macOS: Using The IAP Extension

We also recommend that before doing anything with this extension, you take a moment to look over
the official Apple In-App Purchase API documentation, as it will familiarise you with many of the
terms and concepts required to use the extension correctly, and many of the functions in the
extension are practically 1:1 mappings of the methods described there:

● Apple Developer: In App Purchases

Note that this manual covers both the macOS and iOS/tvOS IAP functions, as they work exactly the
same way and have only been separated into two extensions so that you can use one or the other
or both as required. This means that you may need to do certain checks using the os_type variable
to call the correct function for the current platform the game is running on, but the bulk of the code
will be the same regardless. The examples in this manual are based on the iOS/tvOS functions and
constants, so for macOS you would simply swap (or duplicate, if developing for both platforms) the
function/constant names for the macOS versions and the IAP functionality should work exactly the
same.

2 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

https://help.yoyogames.com/hc/en-us/articles/360002237257
https://help.yoyogames.com/hc/en-us/articles/360002237237
https://developer.apple.com/documentation/storekit/in-app_purchase?language=objc

The Asynchronous IAP Event

When using the Apple IAP extension in your projects, you will be calling different functions that will
trigger "callbacks" from the Apple API. What this means is that certain functions will be run but
won’t return a result until sometime in the future - which could be the next step, or it could be a few
seconds later.

This result, when it comes, is called the "callback" and is Apple’s IAP API responding to something
you’ve done. This callback is dealt with in the Asynchronous IAP Event.

This event will always have a DS map in the GML variable async_load, and this map can be parsed to
get the required information. Each function will generate different callbacks, but they will all have the
following key in common:

● "id" – This is the event ID key and it will hold a CONSTANT with the ID of the event that has
been triggered. For example, if it’s an event for a product query, then the constant will be
ios_product_update / mac_product_update. See the different functions for details about
the constants returned for each.

The rest of the key/value pairs in the map will depend on the function that triggered the Async Event
and the ID of the event, and you should check the individual functions listed in the rest of this
manual for exact details.

3 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Extension Functions

The rest of this manual contains a reference guide to all the functions used by the Apple IAP
Extension, along with any constants that they may use or return and examples of code that use
them. Some of the examples are Extended Examples that also show code from callbacks in the
Asynchronous IAP Event.

It is worth noting that in some cases the function description will mention the use of a private server
to verify purchases. This is not strictly required, as the extension supplies a verification method that
verifies purchases locally with Apple, and purchases can be made and finalised even without server
verification. However, YoYo Games and Apple both highly recommend private server verification for
all IAPs. Setting up the server to deal with purchase verification is outside of the scope of this
documentation and, instead, we refer you to the Apple docs here:

● Apple Developer Docs: Validating Receipts Locally
● Apple Developer Docs: Validating Receipts With The App Store

IMPORTANT! In order for the function ios_iap_ValidateReceipt() to return a true response,
users must download the Apple Inc. Root Certificate and include it with their project in the Included
Files (using included files covers iOS/tvOS and macOS). See:

● https://www.apple.com/certificateauthority/
● https://www.apple.com/appleca/AppleIncRootCertificate.cer

Please see the section below on Validation for more information.

General workflow for using this extension is as follows:

● At the start of the game, check the user is authorised to buy in-app products
● If they are not, disable the possibility for purchases in your game UI and code
● If purchases are permitted, add the different products to the internal products list
● After adding the products but before accepting purchases, query existing purchases and if

there are any unfinished transactions then deal with them, and enable any features based on
durable or subscription transactions.

● Permit the game to run as normal and let the user purchase/consume products as required,
verifying each purchase, then querying them, and then finalising them.

It is important to note that with the Apple purchase API there is no function or method for
consuming a consumable IAP, therefore all consumables must be given to the user the moment the
purchase receipt is validated.

Also note that Apple want ALL purchase requests to be "finalised", regardless of whether the
purchase was actually a success or not (see the function ios_iap_FinishTransaction() for more
details).

4 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Chapters/ValidateLocally.html#//apple_ref/doc/uid/TP40010573-CH1-SW2
https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Chapters/ValidateRemotely.html#//apple_ref/doc/uid/TP40010573-CH104-SW1
https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Chapters/ValidateRemotely.html#//apple_ref/doc/uid/TP40010573-CH104-SW1
https://www.apple.com/certificateauthority/
https://www.apple.com/appleca/AppleIncRootCertificate.cer

Validation

This extension includes a method of validating in-app purchases that does not require the setting up
or use of external servers. However, the extension code also includes a warning about the potential
for hacking intrinsic in this method of validation. This warning is in place as a means of highlighting
the sensitive nature of the Receipt Validation code which is based on an open source repository (and
is credited as such).

The intention of the inclusion of local receipt validation was to give you (the user) a means of
allowing your project to get IAP code running quickly and be easily testable.

It should be understood, however, that there is risk involved with running it in production. Since the
source code is open source and is widely available and readable, using this code will make your
receipt validation more vulnerable to potential attackers, and Apple themselves state that "it's
important that you employ a solution that is unique to your application":

https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt
/Introduction.html

In this case, your available options are as follows:

● Leave this code in place and use local validation, having assessed and understood the risks.

● Alter the code in question (VerifyStoreReceipt.h/mm) to create your own custom solution for
validating receipts, in which case you should study the following documentation:

https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStore
Receipt/Chapters/ValidateLocally.html#//apple_ref/doc/uid/TP40010573-CH1-SW2

In doing so, you should create your own solution for parsing and validating the iOS IAP
receipt.

● Run a server that validates IAP receipts. This is Apple's preferred and suggested method, as it
removes the ability for tampered-with iOS devices to spoof your validation code (since it is
not executed on said compromised device).

5 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Introduction.html
https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Introduction.html
https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Chapters/ValidateLocally.html#//apple_ref/doc/uid/TP40010573-CH1-SW2
https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Chapters/ValidateLocally.html#//apple_ref/doc/uid/TP40010573-CH1-SW2

ios_iap_Init / mac_iap_Init

Description

This function will initialise the Apple In-App Purchase API and is called automatically by the
extension. As such, you should not be using it ever in your game code as it is not required.

Syntax

ios_iap_Init();
mac_iap_Init();

Returns

N/A

Example

N/A

6 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_IsAuthorisedForPayment / mac_iap_IsAuthorisedForPayment

Description

This function will check whether the user currently signed in on the device has authorised
the payment process or not. The function will return true if payment can be completed, or
false otherwise, in which case you should disable all purchase options in the game.
Normally, you’d want to check this return value at Game Start.

Syntax

ios_iap_IsAuthorisedForPayment();
mac_iap_IsAuthorisedForPayment();

Returns

Boolean

Example

global.IAP_Enabled = ios_iap_IsAuthorisedForPayment();

global.ProductID[0, 0] = "ios_consumable";

global.ProductID[1, 0] = "ios_durable";

global.ProductID[2, 0] = "ios_subscription";

if global IAP_Enabled

{

ios_iap_AddProduct(global.ProductID[0, 0]);

ios_iap_AddProduct(global.ProductID[1, 0]);

ios_iap_AddProduct(global.ProductID[2, 0]);

ios_iap_QueryProducts();

}

7 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_AddProduct / mac_iap_AddProduct

Description

This function can be used to add a product to the internal IAP product list, preparing it for
purchase. The function takes a string, which is the product ID as defined in the App Store
Connect console for your game. The function will return a constant (listed below) to inform
you of the success or failure of the addition, and you should call this at the start of your
game before querying or permitting purchases.

Syntax

ios_iap_AddProduct(product_id);
mac_iap_AddProduct(product_id);

Argument Description Data Type

product_id The product ID string of
the product being added

String

Returns

Constant

Constant Actual
Value

Description

ios_no_error
mac_no_error

0 The product was successfully
added to the internal product
list.

ios_ext_error_not_initialised
mac_ext_error_not_initialised

1 This indicates that there was
an issue with initialising
the extension itself and you
should check it has been set
up correctly and set to
export for the given
platform.

ios_error_duplicate_product
mac_error_duplicate_product

3 This indicates that the IAP
product ID has already been
added to the internal product
list.

Cont…/

8 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_AddProduct / mac_iap_AddProduct Cont…/

Example

global.IAP_Enabled = ios_iap_IsAuthorisedForPayment();

global.ProductID[0, 0] = "ios_consumable";

global.ProductID[1, 0] = "ios_durable";

global.ProductID[2, 0] = "ios_subscription";

if global IAP_Enabled

{

ios_iap_AddProduct(global.ProductID[0, 0]);

ios_iap_AddProduct(global.ProductID[1, 0]);

ios_iap_AddProduct(global.ProductID[2, 0]);

ios_iap_QueryProducts();

}

9 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_QueryProducts / mac_iap_QueryProducts

Description

This function can be used to query the status of products from the Apple store. The function
will trigger an Asynchronous IAP Event with the data from the products query. This event
will fill the async_load DS map with the following keys:

● "id" – This will be the constant ios_product_update or mac_product_update,
depending on the current platform you’re targeting.

● "response_json" – This will be a JSON string object which will contain the product
details.

The "response_json" string can be converted into a DS map using the json_decode()

function, and the map will contain two keys: "valid" and "invalid". These keys will in turn
contain a DS list ID which can then be parsed to get information about each of the individual
products.

The "invalid" DS list will simply be a list of strings, where each string relates to an invalid
product ID (note that a product can be invalid if it is not configured or configured incorrectly
on the App Store Connect console, or even if there is a connection issue between the device
and App Store Connect).

The "valid" list will contain a DS map for each list entry, where each map corresponds to a
single valid product. This map will have the following keys:

● "productId" – The unique product ID for the product as a string, for example
"mac_consumable".

● "price" – The localised price of the product as a string, for example "£0.99".

● "localizedDescription" – This will hold the description of the product as a string, and
localised.

● "localizedTitle" – This will hold the title of the product as a string, and localised.

● "locale" – A string representing the user's region settings (see here for more
information).

● "isDownloadable" – This will be a boolean true or false, depending on whether App
Store has downloadable content for this product.

● "discounts" – This will hold a DS list ID where each list entry corresponds to a
discount value.

Cont…/

10 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/LanguageandLocaleIDs/LanguageandLocaleIDs.html

ios_iap_QueryProducts / mac_iap_QueryProducts Cont…/

● "ISOCountryCode" – This is ISO 3166-1 country code, as a string.

● "ISOLanguageCode" – This is the ISO 639-2 language code, as a string.

● "ISOCurrencyCode" – This is the ISO 4217 currency code as a string.

● "subscriptionPeriod" – This will be a DS map ID where the returned map will have
the following keys:

o "numberOfUnits" – The number of "units" that the subscription is for.

o "unit" – The unit being used to calculate the duration of the subscription.
This will be one of the following constants:

Constant Actual
Value

Description

ios_product_period_unit_day
mac_product_period_unit_day

2101
2105

Each unit represents
a day.

ios_product_period_unit_week
mac_product_period_unit_week

2102
2106

Each unit represents
a week.

ios_product_period_unit_month
mac_product_period_unit_month

2103
2107

Each unit represents
a month.

ios_product_period_unit_year
mac_product_period_unit_year

2104
2108

Each unit represents
a year.

Syntax

ios_iap_QueryProducts();
mac_iap_QueryProducts();

Returns

N/A

Cont…/

11 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

https://en.wikipedia.org/wiki/ISO_3166-1
https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes
https://en.wikipedia.org/wiki/ISO_4217

ios_iap_QueryProducts / mac_iap_QueryProducts Cont…/

Example

This function would normally be called straight after adding the desired products to the
internal product list, as shown in the example for the function ios_iap_AddProduct() /

mac_iap_AddProduct(). Once called it will trigger an Asynchronous IAP Event which would
be parsed with something like the following code (note that we show combined code for
both macOS and iOS/tvOS here, but for one or the other you would simply remove the
irrelevant cases):

var _eventId = async_load[? "id"];

switch (_eventId)

{

case ios_product_update:

// Decode the returned JSON

var _map = json_decode(async_load[? "response_json"]);

var _plist = _map[? "valid"];

var _sz = ds_list_size(_plist);

// Loop through all valid products and store any data that you require

for (var i = 0; i < _sz; ++i;)

{

var _pmap = _plist[| i];

switch(_pmap[? "productId"])

{

case "ios_consumable":

global.ProductID[0, 1] = _pmap[? "price"];

global.ProductID[0, 2] = _pmap[? "localizedDescription"];

global.ProductID[0, 3] = _pmap[? "localizedTitle"];

break;

case "ios_durable":

global.ProductID[1, 1] = _pmap[? "price"];

global.ProductID[1, 2] = _pmap[? "localizedDescription"];

global.ProductID[1, 3] = _pmap[? "localizedTitle"];

break;

case "ios_subscription":

global.ProductID[2, 1] = _pmap[? "price"];

global.ProductID[2, 2] = _pmap[? "localizedDescription"];

global.ProductID[2, 3] = _pmap[? "localizedTitle"];

break;

}

}

// Parse any invalid responses here if required

ds_map_destroy(_map);

// Query purchases here and react appropriately

break;

}

12 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_QueryPurchases / mac_iap_QueryPurchases

Description

This function can be used to query the status of all un-finalised purchases. This function can
be called anytime and in any place in your game code, as the purchase status details are
retrieved when the API is initialised and after any change has been made (i.e., something has
been purchased). However, we recommend that you initially call it after adding product IDs
to the internal product list and generally it’s better to call it after having queried product
details too.

IMPORTANT! This function will only return items that have not been finalised. So, any
products that are returned by this function will need to be finalised using the
ios_iap_FinishTransaction() / mac_iap_FinishTransaction() function.

The function will return a JSON string object that can be decoded into a DS map using
json_decode() function. This map will have a single key "purchases" which in turn is a DS
list ID. Each entry in the DS list will be a DS map corresponding to a single purchase, and will
contain the following keys:

● "productId" – The ID string of the purchased product.

● "purchaseState" – The state of the purchase when the function was called. Will be
one of the following constants:

Constant Actual
Value

Description

ios_purchase_success
mac_purchase_success

3001
5001

This indicates that the
product has been successfully
purchased.

ios_purchase_failed
mac_purchase_failed

3002
5002

The product purchase has
failed in some way, for
example, it was cancelled by
the user.

ios_purchase_restored
mac_purchase_restored

3003
5003

The purchase has been
restored. This usually only
occurs when a purchase was
made on one device, and then
restored on another before
being finalised.

13 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Cont…/

ios_iap_QueryPurchases() / mac_iap_QueryPurchases Cont…/

● "responseCode" – This is the Apple response code, an integer value, where:

o purchasing = 0
o purchased = 1
o failed = 2
o restored = 3
o deferred = 4

● "purchaseToken" – The purchase token string.

● "receipt" – The receipt string. This is deprecated and should not be used for
anything. It is only included in this documentation as it is still part of the return
payload from Apple. To get the correct receipt string, please use the function
ios_iap_GetReceipt / mac_iap_GetReceipt().

Generally, you would want to call this function once at the start of the game, and then again
after any purchase receipt validation so that you know which items have been purchased and
need to be finalised and awarded to the user.

Syntax

ios_iap_QueryPurchases();
mac_iap_QueryPurchases();

Returns

String (JSON)

14 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Cont…/

ios_iap_QueryPurchases() / mac_iap_QueryPurchases Cont…/

Example

The following code example shows how to use this function to finalise products after the
receipt has been correctly validated. Generally, this would be done in the Asynchronous
HTTP Event which would be triggered by the return of the validation from either the game
server or Apple:

var _json = ios_iap_QueryPurchases();

if _json != ""

{

var _map = json_decode(_json);

var _plist = _map[? "purchases"];

var _sz = ds_list_size(_plist);

for (var i = 0; i < _sz; ++i;)

{

var _pmap = _plist[| i];

if _pmap[? "purchaseState"] != ios_purchase_failed

{

switch (_pmap[? "productId"]);

{

case global.ProductID[0, 0]: global.Gold += 100; break;

case global.ProductID[1, 0]: global.NoAds = true; break;

case global.ProductID[2, 0]: global.Subs = true; break;

}

}

var _ptoken = _pmap[? "purchaseToken"];

ios_iap_FinishTransaction(_ptoken);

}

ds_map_destroy(_map);

}

15 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_PurchaseProduct / mac_iap_PurchaseProduct

Description

This function is what is used to purchase a product within your game. You supply the product
ID as a string (which should match the ID of the product on the App Store Connect console),
and the function will immediately return one of the constants shown below to inform you of
the initial status of the purchase request, and if that is ios_no_error / mac_no_error then
it will also trigger an Asynchronous IAP Event. In this event the async_load DS map will have
an "id" key which will be either ios_payment_queue_update or
mac_payment_queue_update depending on the platform being run.

The async_load map will also have another key "json_response" which will contain a JSON
object string with the details of the purchase. This string can be decoded into a DS map using
the json_decode() function, and the resulting DS map will have a single key "purchases".
This in turn will be a DS list ID in which each entry is a DS map corresponding to a single
purchase, containing the following keys:

● "productId" – The ID string of the purchased product.

● "responseCode" – This is the Apple response code, an integer value, where:

o purchasing = 0
o purchased = 1
o failed = 2
o restored = 3
o deferred = 4

● "purchaseToken" – The purchase token string.

Cont…/

16 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_PurchaseProduct / mac_iap_PurchaseProduct Cont…/

● "purchaseState" – The state of the purchase which will be one of the following
constants:

Constant Actual
Value

Description

ios_purchase_success

mac_purchase_success

3001

5001

This indicates that the
product has been successfully
purchased.

ios_purchase_failed

mac_purchase_failed

3002

5002

The product purchase has
failed in some way, for
example, it was cancelled by
the user.

ios_purchase_restored

mac_purchase_restored

3003

5003

This indicates that the
purchase has been restored.

● "receipt" – The receipt string. This is deprecated and should not be used for
anything. It is only included in this documentation as it is still part of the return
payload from Apple. To get the correct receipt string, please use the function
ios_iap_GetReceipt / mac_iap_GetReceipt().

If the purchase state comes back as a success or a restored purchase, then you should go
ahead and validate the purchase with either your own server (recommended) or with Apple,
and then finalise the purchase. If the purchase has failed, then you should still finalise the
purchase, but no other action needs to be taken. For more information on finalising
purchases please see the function ios_iap_FinishTransaction() /

mac_iap_FinishTransaction().

Syntax

ios_iap_PurchaseProduct(product_id);
mac_iap_PurchaseProduct(product_id);

Argument Description Data Type

product_id The product ID string of
the product being
purchased

String

Cont…/

17 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_PurchaseProduct / mac_iap_PurchaseProduct Cont…/

Returns

Constant

Constant Actual
Value

Description

ios_no_error
mac_no_error

0 The product was successfully added to
the internal product list.

ios_ext_error_not_initialised
mac_ext_error_not_initialised

1 This indicates that there was an issue
with initialising the extension itself
and you should check it has been set
up correctly and set to export for the
given platform.

ios_no_skus
mac_no_skus

2 There are no products added to the
internal product list.

ios_error_duplicate_product
mac_error_duplicate_product

3 This indicates that the IAP product ID
has already been added to the internal
product list.

Extended Example

The following code would be used to create a purchase request for the given product, and
would be placed anywhere in the game (like a button object):

if global.IAP_Enabled

{

ios_iap_PurchaseProduct(global.ProductID[0, 0]);

}

18 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Cont…/

ios_iap_PurchaseProduct / mac_iap_PurchaseProduct Cont…/

This will then trigger an Asynchronous IAP Event which can be dealt with something like this:

var _eventId = async_load[? "id"];

switch (_eventId)

{

case ios_payment_queue_update:

// Decode the returned JSON

var _json = async_load[? "response_json"];

if _json != ""

{

var _map = json_decode(_json);

var _plist = _map[? "purchases"];

var _sz = ds_list_size(_plist);

// loop through purchases

for (var i = 0; i < _sz; ++i;)

{

var _pmap = _plist[| i];

// Check purchases

var _ptoken = _pmap[? "purchaseToken"];

if _pmap[? "purchaseState"] != ios_purchase_failed

{

var _receipt = ios_iap_GetReceipt();

// CALL SERVER CHECK WITH RECEIPT HERE

// or validate, finalise and award the product

if ios_iap_ValidateReceipt() == true

{

switch (_pmap[? "productId"]);

{

case global.ProductID[0, 0]:

global.Gold += 100;

break;

case global.ProductID[1, 0]:

global.NoAds = true;

break;

case global.ProductID[2, 0]:

global.Subs = true;

break;

}

ios_iap_FinishTransaction(_ptoken);

}

else

{

// Validation failed, so deal with it here

}

}

else

{

// Purchase failed, so finalise it.

ios_iap_FinishTransaction(_ptoken);

}

ds_map_destroy(_pmap);

}

19 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

}

break;

}

20 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_ValidateReceipt / mac_iap_ValidateReceipt

Description

This function can be used for local receipt validation with Apple. In general, you’d want to
use a private server for validation of all purchases (especially subscriptions), but if that is not
possible then you can use this function, after calling the
ios_iap_GetReceipt()/mac_iap_GetReceipt() function to validate purchases. The
function will return true if validation has been successful, or false otherwise, in which case
you should attempt to refresh and revalidate the receipt using ios_iap_RefreshReceipt()

(on iOS only) or exit the app using the function mac_iap_exit() (on macOS only).

Syntax

ios_iap_ValidateReceipt();
mac_iap_ValidateReceipt();

Returns

Boolean

Example

For an example of using this function, please see:

o ios_iap_PurchaseProduct / mac_iap_PurchaseProduct

21 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_RestorePurchases / mac_iap_RestorePurchases

Description

This function can be used to restore any previous purchases and Apple require you to have a
button in your game that calls this function so that users that have changed or refreshed
their device can still access previously made purchases. Calling this function will immediately
return one of the constants shown below to inform you whether the restore request has
been made or not, and then a successful request may trigger an Asynchronous IAP Event
with the restored purchase details. We say "may", as under the following circumstances no
Async Event will be triggered:

● All transactions are unfinished.

● The user did not purchase anything that is restorable.

● You tried to restore items that are not restorable, such as a non-renewing
subscription or a consumable product.

● Your app's build version does not meet the guidelines for the CFBundleVersion key.

If an Asynchronous IAP Event is triggered, the async_load DS map "id" key will be either
ios_payment_queue_update or mac_payment_queue_update depending on the platform
being run.

The async_load map will also have another key "json_response" which will contain a JSON
object string with the details of the purchase. This string can be decoded into a DS map using
the json_decode() function, and the resulting DS map will have a single key "purchases".
This in turn will be a DS list ID in which each entry is a DS map corresponding to a single
purchase, containing the following keys:

● "productId" – The ID string of the purchased product.

● "responseCode" – This is the Apple response code, an integer value, where:

o purchasing = 0
o purchased = 1
o failed = 2
o restored = 3
o deferred = 4

● "purchaseToken" – The purchase token string.

Cont…/

22 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

https://developer.apple.com/documentation/bundleresources/information_property_list/cfbundleversion

ios_iap_RestorePurchases / mac_iap_RestorePurchases Cont…/

● "purchaseState" – The state of the purchase which will be one of the following
constants:

Constant Actual
Value

Description

ios_purchase_success

mac_purchase_success

3001

5001

This indicates that the
product has been successfully
purchased.

ios_purchase_failed

mac_purchase_failed

3002

5002

The product purchase has
failed in some way, for
example, it was cancelled by
the user.

ios_purchase_restored

mac_purchase_restored

3003

5003

This indicates that the
product has been restored.

● "receipt" – The receipt string. This is deprecated and should not be used for
anything. It is only included in this documentation as it is still part of the return
payload from Apple. To get the correct receipt string, please use the function
ios_iap_GetReceipt / mac_iap_GetReceipt().

If the purchase state comes back as a success or a restored purchase, then you should go
ahead and validate the purchase with either your own server (recommended) or with Apple,
and then finalise the purchase and award any features or products to the user. If the
purchase has failed, then you should still finalise the purchase, but no other action needs to
be taken. For more information on finalising purchases please see the function
ios_iap_FinishTransaction() / mac_iap_FinishTransaction().

Syntax

ios_iap_RestorePurchases();
mac_iap_RestorePurchases();

23 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Cont…/

ios_iap_RestorePurchases / mac_iap_RestorePurchases Cont…/

Returns

Constant

Constant Actual
Value

Description

ios_no_error
mac_no_error

0 The restore request has been sent
successfully.

ios_ext_error_not_initialised
mac_ext_error_not_initialised

1 This indicates that there was an issue
with initialising the extension itself
and you should check it has been set
up correctly and set to export for the
given platform.

ios_no_skus
mac_no_skus

2 There are no products added to the
internal product list and so nothing
can be restored.

Extended Example

The following code would be used to create a restore request, and would be placed
anywhere in the game (like a button object):

if global.IAP_Enabled

{

ios_iap_ RestorePurchases();

}

24 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Cont…/

ios_iap_RestorePurchases / mac_iap_RestorePurchases Cont…/

This may then trigger an Asynchronous IAP Event which can be dealt with something like
this:

var _eventId = async_load[? "id"];

switch (_eventId)

{

case ios_payment_queue_update:

// Decode the returned JSON

var _json = async_load[? "response_json"];

if _json != ""

{

var _map = json_decode(_json);

var _plist = _map[? "purchases"];

var _sz = ds_list_size(_plist);

// loop through purchases

for (var i = 0; i < _sz; ++i;)

{

var _pmap = _plist[| i];

// Check purchases

if _pmap[? "purchaseState"] != ios_purchase_failed

{

var _receipt = ios_iap_GetReceipt();

// CALL SERVER CHECK WITH RECEIPT HERE

// or validate, finalise and award the product

if ios_iap_ValidateReceipt() == true

{

switch (_pmap[? "productId"]);

{

case global.ProductID[0, 0]:

global.Gold += 100;

break;

case global.ProductID[1, 0]:

global.NoAds = true;

break;

case global.ProductID[2, 0]:

global.Subs = true;

break;

}

ios_iap_FinishTransaction(_ptoken);

}

else

{

// Validation failed, so deal with it here

}

}

else

{

var _ptoken = _pmap[? "purchaseToken"];

// Purchase failed, so finalise it

25 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_FinishTransaction(_ptoken);

}

ds_map_destroy(_pmap);

}

}

break;

}

26 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_FinishTransaction / mac_iap_FinishTransaction

Description

Once a purchase request, restore request or purchase query has been sent, any products
returned in the Asynchronous IAP event for these calls should be validated and then finalised
before awarding any products to the player. Finalising a product means that you are telling
Apple that the transaction has been completed and the product awarded, and this function
should be called on all transactions, even those that have failed (for example, cancelled by
the user). Any transaction that has not been finalised will appear in the above-mentioned
purchase/restore/query data and should be finalised before any further purchases of the
same product are processed.

When calling this function, you need to supply the product token string (as returned in the
Asynchronous IAP Event for the associated function call), and the function will return one of
the constants listed below.

Syntax

ios_iap_FinishTransaction(purchase_token);
mac_iap_FinishTransaction(purchase_token);

Argument Description Data Type

Purchase_token The purchase token
returned by the purchase
request.

String

Returns

Constant

Constant Actual
Value

Description

ios_no_error
mac_no_error

0 The restore request has been sent
successfully.

ios_error_unknown
mac_error_unknown

-1 This indicates that there is an issue
with finalising the product.

Example

For examples of using this function, please see:

o ios_iap_QueryPurchases / mac_iap_QueryPurchases
o ios_iap_PurchaseProduct / mac_iap_PurchaseProduct
o ios_iap_RestorePurchases / mac_iap_RestorePurchases

27 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

28 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

ios_iap_GetReceipt / mac_iap_GetReceipt

Description

This function can be used to retrieve the receipt string for all purchases currently in progress.
This string can then be sent as part of the payload to your server (or to Apple) to verify the
purchases in the receipt.

IMPORTANT! The receipt string can contain multiple transaction receipts at once as
Apple send back all pending receipts in one string. For more information, including
how to check the information provided in the receipt, please see the Apple Developer
Documentation.

Syntax

ios_iap_GetReceipt();
mac_iap_GetReceipt();

Returns

String

Example

The following code is a very simple example of how to use the function and send a
verification request off to a server you have set up. Note, however, that the actual usage will
very much depend on the how you’ve set up the server and this is not a one-size-fits-all
example to be copied and used directly:

var _receipt = ios_iap_GetReceipt();

if _receipt != ""

{

var _map = ds_map_create();

_map[? "apple_receipt"] = receipt;

var _body = json_encode(_map);

ds_map_clear(_map);

_map[? "Host"] = "10.36.11.105:9999";

_map[? "Content-Type"] = "application/json";

_map[? "Content-Length"] = string_length(_body);

var url = "http://" + _map[? "Host"] + "/apple-receipt-verify";

http_request(url, "POST", _map, _body);

ds_map_destroy(_map);

}

29 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Introduction.html
https://developer.apple.com/library/archive/releasenotes/General/ValidateAppStoreReceipt/Introduction.html

ios_iap_RefreshReceipt

Description

With this function you can request a new receipt for all purchases pertaining to a user and
app. This function is iOS only and should only be called if a previous receipt has been unable
to be validated correctly (for Mac apps, please see the function mac_iap_exit()). The
function will return one of the constants listed below immediately to inform you whether the
refresh request has been successful, and if it is successful then an Asynchronous IAP Event
will be triggered. In this event the async_load DS map will have an "id" key, which will be
the constant ios_receipt_refresh, and an additional key "status". The status will be one
of two constants: ios_receipt_refresh_success or ios_receipt_refresh_failure. If
the refresh is successful, you can then retrieve the new receipt using the
ios_iap_GetReceipt() function, but if it fails then you may want to try again at least once
before deciding that something is wrong.

Note that failing validation is a rare occurrence and is very indicative that there is something
funny going on with the request. As such, you may want to consider locking down and
preventing any further purchases – or at least not granting the products that were being
validated – should validation fail 2 or more times. Any outstanding purchases should still be
finalised at this time.

Syntax

ios_iap_RefreshReceipt();

Returns

Constant

Constant Error
Code

Description

ios_no_error 1 The refresh request has
been sent successfully.

ios_ext_error_not_initialsied 2 This indicates that there
was an issue with
initialising the
extension itself and you
should check it has been
set up correctly and set
to export for the given
platform

ios_error_no_skus 3 There are no SKUs in the
product list and so no
receipts to request.

30 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Cont…/

ios_iap_RefreshReceipt Cont…/

Example

The following example assumes you have received a failed validation attempt from your
server or from local validation and have called this function to request a refresh of the IAP
receipt. This would then be dealt with in the Asynchronous IAP Event in the following way:

var _id = async_load[? "id"];

switch (_id)

{

case ios_receipt_refresh:

if async_load[? "status"] == ios_receipt_refresh_success

{

var _receipt = ios_iap_GetReceipt();

if _receipt != ""

{

// Send off another validation request to your

// server (or locally) and try again

var _receipt = ios_iap_GetReceipt();

if ios_iap_ValidateReceipt() == true

{

switch (_pmap[? "productId"]);

{

case global.ProductID[0, 0]:

global.Gold += 100;

break;

case global.ProductID[1, 0]:

global.NoAds = true;

break;

case global.ProductID[2, 0]:

global.Subs = true;

break;

}

ios_iap_FinishTransaction(_ptoken);

}

}

else

{

// Validation failed, so deal with it here

}

}

}

else if async_load[? "status"] == ios_receipt_refresh_failure

{

global.IAP_Enabled = false;

// Finalise the purchase here

}

break;

}

31 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

mac_iap_exit

Description

This function will force close the app and send the given error code to the OS. This function is
for IAPs on the macOS only. When you send a receipt for validation (either locally or via your
own servers) and the validation fails, you should always call this function and supply the exit
code value as the constant mac_invalid_receipt_exit_code. After the app has closed, the
OS will attempt to obtain a valid receipt and may prompt the user for their iTunes
credentials. If the system successfully obtains a valid receipt, it will relaunch the application,
otherwise, it will display an error message to the user, explaining the problem.

Syntax

mac_iap_exit(error_code);

Argument Description Data Type

error_code The exit code value to use,
which should be the constant
"mac_invalid_receipt_exit_code"
for invalid receipts.

Integer

Returns

N/A

Example

Simply call the function should validation of the purchase receipt fail.

32 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

RegisterCallbacks

Description

This is an internal function for macOS only. This function should never be called in your code,
and you should not edit or change anything about it otherwise the extension may no longer
work.

Syntax

N/A

Returns

N/A

Example

N/A

33 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

