
TEAM LinG - Live, Informative, Non-cost and Genuine!

ADO .NET
Programming

Terrence J. Joubert
and Ryan N. Payet

Wordware Publishing, Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Library of Congress Cataloging-in-Publication Data

Joubert, Terrence J.
ADO .NET programming / by Terrence J. Joubert and Ryan N. Payet.

p. cm.
Includes index.
ISBN 1-55622-965-8 (paperback)
1. Internet programming. 2. ActiveX. 3. Microsoft .NET. I. Payet, Ryan

N. II. Title.

QA76.625 J69 2002
005.2’76--dc21 200212695

CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-965-8

10 9 8 7 6 5 4 3 2 1
0210

Products mentioned are used for identification purposes only and may be trademarks

of their respective companies.

All inquiries for volume purchases of this book should be addressed to
Wordware Publishing, Inc., at the above address. Telephone inquiries may be
made by calling:

(972) 423-0090

TEAM LinG - Live, Informative, Non-cost and Genuine!

Contents

Aims and Objectives. xiii

Part I: Introduction to ADO .NET 1

Chapter 1: Growing up from ADO 3

In This Chapter . 3

Architectural Differences. 3

The ADO Architecture 4

Why Not Use ADO in .NET? 5

The ADO .NET Architecture 7

.NET Data Providers 9

In-Memory Data Representation 10

ADO: The Recordset Object 10

ADO .NET: The DataSet and DataTable Objects . . . 10

Relationship Management 12

ADO: Using JOIN in SQL 12

ADO .NET: The DataRelation Object 13

Where is the Recordset? 15

Summary. 16

Part II: ADO .NET Revealed 17

Chapter 2: Interacting with Databases 19

In This Chapter . 19

The Connection Object 20

Connection Object Properties 21

ConnectionString 21

ConnectionTimeout 22

Database . 22

DataSource. 23

iii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Provider . 23

ServerVersion . 23

State . 24

Connection Object Methods 24

BeginTransaction() 24

ChangeDatabase() 25

Close() . 25

CreateCommand() 26

Dispose() . 26

Equals() . 27

GetType() . 27

Open() . 28

ToString() . 28

Connecting Through SQL Server .NET

Data Provider . 29

The Command Object 30

Command Object Properties 30

CommandText . 30

CommandTimeout 30

CommandType . 31

Connection . 31

Container . 32

Parameters. 32

Transaction. 32

Command Object Methods. 33

Cancel() . 33

CreateParameter(). 33

Dispose() . 34

ExecuteNonQuery() 34

ExecuteReader(). 35

ExecuteScalar() 35

ExecuteXmlReader() 36

GetType() . 36

ToString() . 37

The DataReader Object 37

DataReader Properties 37

Depth. 37

Contents

iv

TEAM LinG - Live, Informative, Non-cost and Genuine!

FieldCount . 38

IsClosed . 38

Item(<column_name as string> or

<column_ordinal as integer>) 38

RecordsAffected 39

DataReader Methods 39

Close() . 39

CreateObjRef(). 39

Equals() . 40

GetBoolean(). 40

GetByte() . 41

GetBytes() . 41

GetChar() . 42

GetChars() . 43

GetDataTypeName(). 43

GetDateTime(). 44

GetDecimal() . 44

GetDouble() . 45

GetFieldType(). 45

GetFloat() . 46

GetGuid() . 46

GetHashCode() 47

GetInt16() . 47

GetInt32() . 48

GetInt64() . 49

GetName() . 49

GetOrdinal() . 50

GetSchemaTable() 50

GetString() . 50

GetTimeSpan() 51

GetValue() . 51

GetValues() . 52

IsDBNull() . 52

NextResult() . 53

Read() . 53

The DataAdapter Object 54

SqlDataAdapter Constructor 54

Contents

v

TEAM LinG - Live, Informative, Non-cost and Genuine!

New(). 55

New(System.Data.SqlClient.SqlCommand) 55

New(command as String, connection as

String) . 56

New(command as String, connection as

SqlClient.SqlConnection) 56

SqlDataAdapter Properties. 57

AcceptChangesDuringFill 57

ContinueUpdateOnError 58

DeleteCommand. 58

InsertCommand 59

MissingMappingAction 59

MissingSchemaAction 60

SelectCommand 60

TableMappings. 61

UpdateCommand 61

SqlDataAdapter Methods. 62

CreateObjRef(). 62

Dispose() . 62

Fill() . 63

FillSchema() . 64

Update() . 65

Summary. 66

Chapter 3: Data Manipulation 67

In This Chapter . 67

The DataSet Component 68

What is the DataSet? 68

When Do You Need the DataSet? 69

How is the DataSet Organized? 70

Core DataSet Properties 71

CaseSensitive . 71

Container . 71

DataSetName . 72

DefaultViewManager 72

DesignMode . 72

EnforceConstraints 73

Contents

vi

TEAM LinG - Live, Informative, Non-cost and Genuine!

ExtendedProperties 73

HasErrors . 73

Locale . 74

Namespace. 74

Prefix . 74

Relations . 75

Site . 75

Tables . 75

Core DataSet Methods 76

AcceptChanges(). 76

BeginInit() . 76

Clear() . 77

Clone() . 78

Copy() . 78

Dispose() . 79

EndInit() . 79

GetChanges() . 80

GetService() . 80

GetType() . 81

GetXML() . 82

GetXmlSchema() 82

HasChanges() . 83

InferXmlSchema() 84

Merge() . 86

ReadXml() . 88

ReadXmlSchema() 89

RejectChanges() 89

Reset() . 90

ToString() . 90

WriteXml() . 91

WriteXmlSchema() 91

DataSet.ExtendedProperties 92

Adding an Extended Property 92

Reading and Writing Values 93

DataTableCollection . 93

DataRelationCollection 94

The Big Picture . 95

Contents

vii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary. 98

Chapter 4: Designing ADO .NET Applications 99

.NET Application Models 99

Windows Forms Applications 99

Form Data Binding 100

Common Scenarios for Data Binding 102

Data Access Strategy for Windows Forms

Applications. 103

Console Applications 104

Data Access Strategy for Console

Applications. 104

Windows Services Applications 105

Data Access Strategy for Windows Services . . . 105

ASP .NET Web Applications 106

Web Forms . 107

Data Access in Web Forms. 107

Data to XML Web Services 109

Data Access Strategy for ASP .NET

Applications. 115

Data, Data Everywhere 120

Spec My Components 120

What is a Component in .NET?. 121

When to Build Data Components. 121

Component Design Guidelines 122

Component Implementation 123

Learning to Run . 125

Connection Pooling 125

Stored Procedure or SQL Statement? 127

Which Data Type? 127

Data Warehousing 128

Tuning and Monitoring 128

Protecting the Application 129

Passwords, Users, and Access Rights 129

Application Information 130

Summary . 130

Contents

viii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 5: XML Integration with ADO .NET 131

XML in .NET Frameworks 131

Architectural Overview and Design Goals 131

Standards Compliance 132

Extensibility . 132

Pluggable Architecture. 132

Performance . 133

Tight Integration with ADO .NET. 133

DOM: The XML Document Object Model 134

Nodes in .NET 137

Loading XML Documents in the DOM 138

Validating XML Documents 139

XML Integration with Relational Data 143

XML with MS SQL Server 2000 143

DataSet and XML 144

DiffGrams. 145

Working with ReadXml 149

Writing XML from DataSet 152

XML Schemas from DataSet. 154

Typed DataSets from XSD Schema 155

DataSet and XmlDataDocument 156

Synchronizing DataSet with

XmlDataDocument 157

Nested DataRelations 159

Creating DataSet Relational Schema from

XML Schema . 164

Creating from XML Schema (XSD) 164

Inferring from XML 170

Summary . 172

Chapter 6: Practical ADO .NET Programming
(Part One) 173

In This Chapter . 173

The Case Study . 174

The Web Service . 175

Contents

ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Designing the Web Service 175

OrderProcessingWS 176

Data Retrieval Methods 176

Implementing OrderProcessingWS 177

Setting Up IIS . 178

Creating OrderProcessingWS Project 179

Web Service Namespace 180

Initialization Code 181

GetOrders Methods. 184

GetOrderDetails Methods 193

GetFullOrders Methods 195

GetFullOrders Code 201

GetFullOrders_By_Customer Code 205

Summary . 207

Chapter 7: Practical ADO .NET Programming
(Part Two) 209

In This Chapter . 209

Data Update Methods 209

The Update Functions 210

The Protected Order Details Update Methods . . . 211

The DeleteOrderDetails Method 211

The InsertOrderDetails Method. 214

The UpdateOrderDetails Method 216

Concurrency Issues 219

The Protected Orders Update Methods 220

The sp_UpdateOrders Stored Procedure 220

The sp_InsertOrders Stored Procedure. 223

The sp_DeleteOrders Stored Procedure 227

The UpdateOrders Method 228

The DeleteOrders Method. 232

The InsertOrders Method 234

The FullUpdateOrder Method 237

Testing the Update Methods. 241

Summary . 241

Contents

x

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part III: Special Topics 243

Chapter 8: Migrating ADO Applications 245

In This Chapter . 245

Legacy of Time. 245

Language Changes . 246

What about COM? . 249

.NET Framework Bidirectional Migration

Support . 250

ASP and ASP .NET 250

What about ADO? . 250

To Migrate or Not to Migrate? 257

Migration Steps . 258

Step 1: Migrate the Clients 258

Step 2: Create .NET Wrappers to COM

Components . 258

Step 3: Migrate the Business Objects 259

Summary . 259

Chapter 9: Manipulating Multidimensional Data. 261

In This Chapter . 261

A Quick Primer on Analysis Services. 262

Analysis Services Installation 262

System Requirements 262

Installation Components 264

Setup . 266

Starting Up . 266

Running Setup. 266

Understanding the Data Source 270

The Relational Database 271

The OLAP Database 272

Populating the OLAP Database 272

How is the Data Stored? 273

PivotTable Service 273

OLEDB Provider for OLAP 273

Multidimensional Expressions (MDX) 274

Contents

xi

TEAM LinG - Live, Informative, Non-cost and Genuine!

ActiveX Data Object Multidimensional

(ADO MD) . 274

ADO MD Example . 284

Using the CubeBrowser ActiveX Control 285

Summary . 297

Appendix A: The Object-Oriented Features
of VB .NET 299

Appendix B: Database Normalization. 325

Appendix C: Views, Stored Procedures, and Triggers . . 335

Appendix D: Advanced SQL Query Techniques 375

Index. 417

Contents

xii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Aims and Objectives

This book provides a sophisticated reference to ADO

.NET solution development using Microsoft Visual Stu-

dio .NET. It is aimed at programmers with a working

knowledge of the .NET Framework and VB .NET. A

beginner’s knowledge of ADO .NET is not necessary, but

it will provide an advantage. Much of the ADO .NET

functionality is specifically targeted at developers, and

the aim of this book is to dive into the advanced topics

and various programming opportunities that the product

presents.

The book will assume readers have experience and

familiarity with the following technologies:

� OLE DB data access technologies

� The .NET Framework

� ADO/ADO .NET

� XML (Extensible Markup Language)

� Visual Studio .NET

The book takes a specifically solutions-oriented

approach, demonstrating at all levels how the product can

be used to provide timely solutions to real-world prob-

lems. Similarly, an emphasis will be placed on the pro-

cess of solution development using robust examples to

teach how concepts are applied in the business world.

Many readers will read the book in sequence, from cover

to cover, in order to get up to speed and become familiar

with the product as quickly as possible. Others will wish

xiii

TEAM LinG - Live, Informative, Non-cost and Genuine!

to dip in on individual chapters, even individual sections,

effectively using the book as a reference volume. I aim to

cater as much as possible to both groups; each chapter

has clearly defined content that builds on previously dis-

cussed material but does not, in any way, rely on the

material that follows it.

The content develops in a consistent, logical manner,

which advances the “story” of the book; that is, just as

the book as a whole has a direction and purpose, each

chapter, even individual sections within a chapter, have a

well-defined direction and purpose.

Aims and Objectives

xiv

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part I

Introduction
to ADO

.NET

1

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 1

Growing up from
ADO

In This Chapter

ADO .NET presents a robust and revolutionary data

access architecture at the core of the Microsoft .NET

strategy. Being an integral member of the core class

libraries of the .NET Framework, ADO .NET is nothing

like its predecessor. While it does provide some tradi-

tional interfaces for backward compatibility and ADO

migration, the rich set of tools available in the Sys-

tem.Data namespace that holds ADO .NET goes far

beyond the most wonderful magic one can perform with

ADO.

This chapter is about the differences between a father

and a son. It is important for you, the ADO programmer,

to understand the differences at the core conceptual level

before you attempt to dive into anything that involves

ADO .NET.

Architectural Differences

Architecture is everything. It affects how entities are

designed, how they work, and, ultimately, it defines what

we can do with them. ADO and ADO .NET have two

completely different architectures. This section of the

chapter touches on the fundamental principles behind the

two technologies and how they differ.

3

TEAM LinG - Live, Informative, Non-cost and Genuine!

The ADO Architecture

Turn the pages of your history book. Microsoft released

ADO as part of its Universal Data Access (UDA) strat-

egy. OLE DB was also released as part of UDA and was

originally the standard that developers would use to

access and manipulate data sources. Contrary to the

ODBC standard that was tied to Windows, OLE DB

brought some world peace to the data access industry by

allowing database engine developers to implement pro-

viders that would essentially provide OLE DB interfaces

to data sources. A key example is the Microsoft SQL

Server database engine. SQL Server data sources are

stored on a database server. The SQLOLE DB provider

provides all the means of communication that any client

or other servers need with that particular data source.

An OLE DB provider may even allow developers to use

customized query languages in querying the data

sources. In the case of SQLOLE DB, that language is

called T-SQL.

To implement an OLE DB provider, one would use the

OLE DB API. This is a set of low-level functions written

in the C language. With the implementation of such an

open architecture, Microsoft was clearly targeting the big

database vendors, such as Oracle, Informix, and Sybase,

while creating unified data access architecture for its

flagship operating system—Windows.

To facilitate rapid development of database applications

and further expand its COM (Component Object

Modeling) standard, Microsoft released ADO as a library

of rich COM components providing high-level interfaces

that would sit one layer above the very hard-to-use OLE

DB API. Using ADO, database developers would simply

attempt a connection to a data source, query the data

source, and load a set of rows (record set) into memory.

4 Chapter 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

Why Not Use ADO in .NET?

The .NET Framework does provide support for ADO. In

fact, it is possible to create a fully functional ADO appli-

cation that runs on the .NET Framework. However, if

you intend to create an ADO application, I suggest that

you stick to Visual Studio 6 because there are a lot of

architectural issues that you will face.

1. ADO is Based on COM

As mentioned above, the ADO architecture is based on

the principles of COM. The .NET Framework does not

support COM directly, but rather, it has a COM inter-

operability class library that sleeps silently within the

COMLIB namespace. When using COM in .NET applica-

tions, the CLR always sends requests to the COM

interoperability layer whenever you reference anything

that is based on COM. This is always the case when you

reference ADO objects in a .NET application. It has an

enormous negative impact on the speed at which such an

application runs. There is no need to pay such a high cost

when you have the ADO .NET class library to use that is

directly executable by the CLR.

2. Data Type Compatibility

Secondly, there is an issue with the famous ADO

Recordset object. This object is used to retrieve and

store data in memory. It has a property of the COM type

variant called Fields. The .NET CLR does not support

the variant data type, as is the case with several other

COM data types. Whenever ADO is used in the .NET

application, there are a series of data type conversions

that the CLR needs to do through the COM interoper-

ability library. This again puts a huge burden on the appli-

cation’s performance.

Growing up from ADO 5

P
a
rt

I

TEAM LinG - Live, Informative, Non-cost and Genuine!

For a list of COM data types found in ADO and their cor-

responding .NET data types, refer to the table below:

ADO Data Type .NET Framework Data Type

adEmpty null

adBoolean Int16

adTinyInt SByte

adSmallInt Int16

adInteger Int32

adBigInt Int64

adUnsignedTinyInt Int16

adUnsignedSmallInt Int32

adUnsignedInt Int64

adUnsignedBigInt Decimal

adSingle Single

adDouble Double

adCurrency Decimal

adDecimal Decimal

adNumeric Decimal

adDate DateTime

adDBDate DateTime

adDBTime DateTime

adDBTimeStamp DateTime

adFileTime DateTime

adGUID GUID

adError ExternalException

adIUnknown Object

adIDispatch Object

adVariant Object

adPropVariant Object

adBinary byte

adChar string

6 Chapter 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

ADO Data Type .NET Framework Data Type

adWChar string

adBSTR string

adChapter not supported by .NET

adUserDefined not supported by .NET

adVarNumeric not supported by .NET

3. .NET Application Architecture

Third, there are also the design goals of the .NET

Framework to consider. .NET was designed so that appli-

cation services could talk to each other using technolo-

gies such as XML and remoting. ADO does not support

XML, nor does it allow disconnected data sharing

between remote application servers. Using ADO in .NET

applications limits the amount of things that you can do

to implement a true .NET application.

The ADO .NET Architecture

A great part of the .NET Framework is called .NET class

libraries. These libraries contain a set of classes that pro-

vide services that developers use to create .NET applica-

tions. Among these libraries is the System.Data class

library.

System.Data holds all the functionality needed for devel-

opers to create rich, scalable, and distributed database

applications that run on the .NET Common Language

Runtime. System.Data provides a unified, object-ori-

ented, hierarchical, and extensible set of classes. It is a

common API that is usable across all .NET programming

languages, while the CLR enables cross-language inheri-

tance, error handling, and debugging of data classes.

Together, the functionality present in these classes is

referred to as ADO .NET, and this is what we will dis-

cuss throughout the rest of this book.

Growing up from ADO 7

P
a
rt

I

TEAM LinG - Live, Informative, Non-cost and Genuine!

There are three main design goals behind ADO .NET:

� To provide seamless support for XML

� To provide an expandable and scalable data access

architecture for the revolutionary n-tier program-

ming model

� To extend the current capabilities of ADO

The core ADO .NET architecture is built to provide

access to relational, XML, and other OLE DB data

sources. The XML-centric classes are not within the

System.Data library; they are part of the System.XML

library. Therefore, it is important to reference both the

System.Data and System.XML namespaces in any data-

base applications that you create. In contrast to the ADO

object model, ADO .NET separates data access from data

manipulation, therefore enabling flexibility when operat-

ing in a disconnected environment.

In a typical data manipulation scenario, data is retrieved

using the DataReader object through a .NET data pro-

vider. The retrieved data can be processed directly or,

alternatively, it can be stored inside a DataSet object on

the client. Within the DataSet, the data is completely

separated from its source. The DataSet provides the

developer with three powerful and flexible aspects:

� Data within the DataSet object can be manipulated

and exposed to the user in several ways using other

objects like DataTable, DataRelation, and DataViews

contained within that DataSet.

� The content of a DataSet can be combined with data

from other data sources. This offers the developer

the superb capability to unify several types of data.

Think of a scenario where you may have to imple-

ment a link between your Sales, CRM, and Account-

ing systems. Traditionally, this would have been done

using classical COM interfaces. The ADO .NET

8 Chapter 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

DataSet hides all these complexities by providing

seamless data integration capability.

� The DataSet provides the ability for you to share data

among remote tiers of an application or application

servers. Although many developers prefer to share

data using XML, this is an excellent way to share

data between tiers in the n-tier application program-

ming model.

More is written about the DataSet object in Chapter 3,

“Data Manipulation.”

.NET Data Providers

In a typical .NET database application, objects and

data-sharing services, referred to as consumers, interact

with the database using a .NET data provider. To further

isolate data access from data manipulation, a provider is

implemented to act as a form of interface between data

consumers and data servers. It holds all the logic

required to perform, retrieve, and update operations on a

data source. The provider would be used to retrieve data

into a DataSet and update the database.

ADO .NET ships with two data providers: the SQL

Server .NET Data Provider and the OLE DB .NET Data

Provider.

Note: Other independent database vendors such
as Oracle, Informix, and Sybase, may implement
data providers for their own data sources.

The SQL Server .NET Data Provider is the provider

used for SQL Server databases implemented in SQL

Server 7 or later. Data access to OLE DB compliant data

sources is achieved using the OLE DB .NET Data

Provider.

The remainder of this chapter covers the differences

between ADO and ADO .NET.

Growing up from ADO 9

P
a
rt

I

TEAM LinG - Live, Informative, Non-cost and Genuine!

In-Memory Data Representation

Manipulating data in a client application is one of the

most important aspects of database programming. In

order to effectively implement high-performance data

manipulation procedures, it is imperative for you to

understand how the data access components hold data in

memory.

ADO: The Recordset Object

The way data resides inside an ADO Recordset object is

somewhat similar to database tables. The data is repre-

sented in single rows. A value inside a column is

accessed by browsing to the record and reading the value

attribute of the Recordset’s Fields(columnName) object

property. A reading of a Recordset value is illustrated

here:

Set objRS = Server.CreateObject("ADODB.Recordset")
'retrieve a set of rows
Variable1 = objRs.Fields("FieldName")

ADO .NET: The DataSet and DataTable Objects

The DataSet object holds data values in memory in ADO

.NET applications. The DataSet itself is not a direct con-

tainer of data. It holds a collection of Recordset-like

objects called DataTables. A DataTable is the client rep-

resentation of a database table; it is simply a set of rows.

The DataSet and DataTable objects are covered in more

detail in Chapter 3, “Data Manipulation.”

The following code illustrates the way in which a

DataSet is initialized on a Web Form:

10 Chapter 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dim objDSArtists As New _
System.Data.DataSet("Artists")

Dim objDAArtists As _
System.Data.SqlClient.SqlDataAdapter

Dim strQuery, _
strCon, _
strArtistName _
As String

Dim intArtistID As Long

Dim intLoopCounter As Integer

strCon = "Initial Catalog=Multimedia;”
strCon &= ”Data Source=LOCALHOST;UID=sa;”
strCon &= ”PWD=sa;"

strQuery = "SELECT * FROM Artist ”
strQuery &= ”Order By ArtistName"

objDAArtists = New _
SqlClient.SqlDataAdapter(strQuery, strCon)

objDAArtists.Fill(objDSArtists)

lstSingers.Items.Clear()

With objDSArtists.Tables(0)
For intLoopCounter = 0 To .Rows.Count - 1

strArtistName = _
.Rows(intLoopCounter).Item("ArtistName")
lstSingers.Items.Add(strArtistName)

Next
End With

1. The DataSet is initialized followed by a DataAdapter
object from the SQL Server .NET data provider,
SqlClient.

2. Other variables that would be used for DataSet
manipulation are also declared and initialized.

Growing up from ADO 11

P
a
rt

I

TEAM LinG - Live, Informative, Non-cost and Genuine!

3. The DataAdapter is then initialized with a string rep-
resenting the query and the connection string for the
database on the SQL Server.

4. lstSingers is a ListBox web control. The purpose of
the code above is to retrieve a list of Singers and
populate the ListBox.

5. After data retrieval, the DataSet is populated by
whatever is retrieved by the DataAdapter object,
using the latter’s Fill method. When the Fill method
is called, the DataSet, which is passed as a parame-
ter, does the following:

a. Internally creates a DataTable object

b. Initializes that particular DataTable with the row

set retrieved by the DataAdapter

6. The Tables collection property of the DataSet holds
references to all the DataTable objects that are part
of the particular DataSet. Each object inside the col-
lection has an index. Since the code above created
only one DataTable, we are safe in referencing that
DataTable with the index 0; otherwise, it would have
been better to reference it using a particular name
specified when the Fill method is called on the
DataAdapter.

Relationship Management

The maintenance of relationships between data elements

is an imperative part of data manipulation inside client

applications. Let’s take a look at how ADO and ADO

.NET differ in the way they maintain relationships

between related data elements.

ADO: Using JOIN in SQL

In order to maintain proper relationships between data

rows in ADO Recordset objects, the JOIN SQL statement

12 Chapter 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

is used to retrieve the data. A typical relationship sce-

nario would be a query that retrieves the name and

address details of all customers that ordered products

during the first quarter of 1997. In ADO, this operation is

handled using the following code:

strQuery = "SELECT DISTINCT Customers.CompanyName,
Customers.City, Customers.Country "

strQuery = strQuery & "FROM Customers RIGHT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID"

strQuery = strQuery & "WHERE Orders.OrderDate BETWEEN
'19970101' And '19970331'"

objRS.Open(strQuery, objConn) 'assuming objConn is a
'valid connection object

The Recordset would return the following set of rows:

ADO .NET: The DataRelation Object

One of the core design goals of ADO .NET was to pro-

vide data access in a mobile, web-based, disconnected,

and server-isolated application architecture. Imple-

menting JOIN statements like in ADO would mean that

the server needs to get involved in every data

Growing up from ADO 13

P
a
rt

I

TEAM LinG - Live, Informative, Non-cost and Genuine!

manipulation scenario performed by the client. This is

nowhere near server isolation.

In ADO .NET, relationships between associated rows of

different DataTables are maintained by objects called

DataRelations. Refer to Chapter 3 for more information

on the DataRelation object. In the following piece of

code, we create a DataRelation object for two DataTable

objects inside a DataSet:

Private Sub Create_Cust_Order_Relation()

Dim custCol As DataColumn
Dim orderCol As DataColumn

custCol = objDataSet.Tables("Customers")

.Columns("CustID")
orderCol = objDataSet.Tables("Orders")

.Columns("CustID")

' Create DataRelation.
Dim relCustOrder As DataRelation
relCustOrder = New DataRelation("CustomersOrders",

custCol, orderCol)

' Add the relation to the DataSet.
objDataSet.Relations.Add(relCustOrder)

End Sub

As illustrated in the code above, a DataRelation object is

created along two DataColumn objects. The DataColumn

objects must be of the same data type. Once a Data-

Relation is created, it is possible to show the data in sev-

eral dimensions using DataViews.

You will learn more about the DataColumn and DataView

objects in Chapter 3.

14 Chapter 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

Where is the Recordset?

Finally, it is very important for ADO programmers to

understand where their favorite Recordset object has

gone. As the following table illustrates, the functionality

provided by the Recordset object is actually shared

among several ADO .NET objects.

ADO .NET
Object

Description

DataReader Provides a forward-only and read-only row set of
data from a data source. The DataReader is similar
to a Recordset object with its CursorType property set
to adOpenForwardOnly and its LockType property set
to adLockReadOnly.

DataSet Provides client access to relational data. This object is
independent of any specific data source and
therefore can be populated from multiple and
differing data sources, including relational databases
and XML, or can be populated with data local to the
application. Data is stored in a collection of one or
more table-like structures called DataTables and can
be accessed non-sequentially and without limits to
availability, unlike ADO in which data must be
accessed a single row at a time. A DataSet can
contain relationships between tables, similar to the
ADO Recordset in which a single result set is created
from a JOIN. A DataSet can also contain unique,
primary key, and foreign key constraints on its tables.

The DataSet is similar to a Recordset with
CursorLocation = adUseClient, CursorType =
adOpenStatic, and LockType = adLockOptimistic.
However, the DataSet has extended capabilities over
the Recordset for managing application data.

DataAdapter Populates a DataSet with data from a relational
database and resolves changes in the DataSet back
to the data source.

The DataAdapter enables you to explicitly specify
behavior that the Recordset performs implicitly.

Growing up from ADO 15

P
a
rt

I

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary

You have just read a high-level overview of the differ-

ences between ADO and ADO .NET. While the .NET

Framework provides support for the COM standard on

which ADO is built, ADO .NET provides all the means of

data access in .NET for all types of application services.

ADO .NET is also more integrated with XML than ADO,

making data sharing across remote application tiers a

reality. ADO .NET contains a lot of objects, and the sub-

sequent chapters dig deeper into the way these objects

interoperate to help you implement the best .NET data-

base application.

16 Chapter 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part II

ADO .NET
Revealed

17

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 2

Interacting with
Databases

In This Chapter

Throughout Chapter 1, you learned about the existence

of the components available as two distinct groups in

ADO .NET. There is the group of components that allows

connection to and interaction with data sources and

another group that provides client manipulation of data.

This chapter is about the first aforementioned group of

components that provides an interface to the data source.

A complete reference is provided on the following

components:

� Connection

� Command

� DataReader

� DataAdapter

As covered in Chapter 1, all .NET data providers must

implement interfaces to all these components. Figure 2-1

shows the relationship of these components inside a

.NET data provider. In this chapter, we will cover each of

these components as they are implemented in the two

original data providers shipped with the .NET Frame-

work (SQL Server .NET Data Provider and OLE DB

.NET Data Provider).

19

TEAM LinG - Live, Informative, Non-cost and Genuine!

This chapter is very conceptual and organized as a refer-

ence volume to the above objects. After learning about

the concepts in this chapter, you will be provided with an

overview of how everything fits together in a practical

programming environment in Chapter 5.

The Connection Object

The Connection object provides all the means of connec-

tion to the database on which a desired transaction is to

be made. This is the first object that any developer

comes face-to-face with while trying to use the .NET

Data Provider. Before any commands can be executed on

the database, a successful connection to that particular

database must be established using the Connection

object.

20 Chapter 2

Figure 2-1: A view inside a .NET data provider

TEAM LinG - Live, Informative, Non-cost and Genuine!

Connection Object Properties

ConnectionString

Type: String

Attribute: Read/Write

Default: “”

Description: The ConnectionString property of the Con-

nection object defines a valid connection string to the

database with which the Connection object is to connect.

The string usually contains parameters necessary to con-

nect to the data source. The string is usually a

semicolon-separated parameter list, with each parameter

set to its appropriate value:

Provider: Specifies the OLE DB provider through which

you wish to connect to a data source. You need to

specify a provider only when you wish to connect

through the OLE DB .NET Data Provider. This

parameter does not have to be specified when con-

necting through the SQL Server .NET Data

Provider.

Data Source: Specifies the name of the database server

that is hosting the database to which you wish to

connect

Initial Catalog: Specifies the name of the database to

which you wish to connect. The database must be

located on the Data Source database server.

UserID: Specifies a valid user ID for a user who has

access to login to the database server specified by

the Data Source parameter

Password: Specifies the password for the user specified

in the UserID parameter

Interacting with Databases 21

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

A typical connection string would look like this:

Connection.ConnectionString = "Provider=MSOLAP;DataSource=
LOCALHOST;UserID=sa;password=sa"

It is good coding practice to prepare the value of the con-

nection string in one place. A typical scenario is to store

the value inside a string variable and then use that vari-

able to set the value of this property.

ConnectionTimeout

Type: Integer

Attribute: Read-only

Default: 15

Description: The ConnectionTimeout property is an

integer value that specifies the number of seconds that

the Connection object should wait for a connection to be

established to a server before generating an error.

Database

Type: String

Attribute: Read-only

Default: “”

Description: The Database property obtains the name of

the database to which the Connection object is

connected.

A typical use of the Database property is when you wish

to show a user which database is currently being used.

22 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

DataSource

Type: String

Attribute: Read Only

Default: “”

Description: The DataSource property obtains the loca-

tion and filename of the data source to which the Con-

nection object is currently connected.

A typical use of the DataSource property is when you

wish to show a user which data source is currently being

used.

Provider

Type: String

Attribute: Read-only

Default: “”

Description: The Provider property obtains the current

OLE DB provider through which the Connection object

is connecting to the current data source.

A typical use of the Provider property is when you wish

to show a user which provider is currently being used for

transactions to a particular data source.

ServerVersion

Type: String

Attribute: Read-only

Default: “”

Description: The ServerVersion property obtains the

version information of the database server to which the

client is connected.

Interacting with Databases 23

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

A typical use of the ServerVersion property is when you

wish to show a user the version information for the par-

ticular server to which the Connection object is

connected.

State

Type: ConnectionState enumeration residing inside the

System.Data namespace

Attribute: Read-only

Description: The State property obtains the current

state of the connection to the database server. Possible

values are:

Open: The connection to the server exists and can be

used to issue commands to the database.

Closed: The connection to the server does not exist and

cannot be used to issue commands to the database.

A typical use of the State property is when you wish to

test whether a valid connection exists to the data source

before performing any operations. This is a solid mecha-

nism to avoid errors in your applications.

Connection Object Methods

BeginTransaction()

Returns

System.Data.IDbTransaction: An object that represents a

valid database transaction

Parameters

None

Description

Begins a new database transaction

24 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

Call this method to perform any transaction on a data-

base. You must call the Commit() or Rollback() method

after the transaction has been made.

ChangeDatabase()

Returns

Void

Parameters

value: String; the name of the new database

Description

Changes the database for an opened connection. The

database must reside on the same server as the previous

database.

Usage

This method is used when you wish to change the data-

base that you are working with. It is a very convenient

way to manage memory because you are not creating a

new connection.

Close()

Returns

Void

Parameters

None

Description

Closes the connection that the Connection object has

with a data source

Interacting with Databases 25

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

This method is used when you wish to close an opened

connection.

CreateCommand()

Returns

System.Data.IDbCommand: A valid Command object

Parameters

None

Description

Creates a valid Command object associated with the

Connection object

Usage

This method is used when you wish to create a new

Command object. After creating the Command object,

you can start issuing SQL commands to the database to

which the Connection object has an open connection.

Dispose()

Returns

Void

Parameters

None

Description

Closes the Connection object and releases all of its

resources

26 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

Use the Dispose() method to release memory occupied

by the Connection object.

Equals()

Returns

Boolean

Parameters

obj: System.Object; any object inherited from the

System.Object class

Description

Determines whether obj is equal to the Connection

object

Usage

This method will always return False if you pass an

object that is not of the same type as the Connection

object. It is useful when you need to test whether two

Connection objects have the same type of connection.

GetType()

Returns

System.Type

Parameters

None

Description

This method returns the System.Type value for the Con-

nection object. It is usually the class name of the object.

Interacting with Databases 27

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

Use this method to obtain a valid System.Type for the

Connection component.

Open()

Returns

Void

Parameters

None

Description

Opens a database connection based on the settings inside

the ConnectionString property

Usage

Use this method to open a connection to the database.

ToString()

Returns

String: A valid string representing the object

Parameters

None

Description

Attempts to convert the Connection object to a string

and returns the string

Usage

Use this method to obtain a string representation of the

Connection component.

28 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Connecting Through SQL Server .NET Data
Provider

In this section you will learn to connect to an SQL

Server database using the SQL Server .NET Data Pro-

vider. This is simply to have a taste of how this provider

implements its flavor of the Connection object differently

from the generic Connection object.

The following code assumes that you are referencing the

System.Data.SqlClient namespace that holds all the logic

for the SQL Server .NET Data Provider.

� The Connection object and connection string are

declared:

Dim objConn As New System.Data.SqlClient.
SqlConnection()

Dim strConn As String

� The connection string is initialized. Notice that all

you have to specify in the connection string is the

server name, the initial catalog, and the login

information.

strConn = "Data Source=LOCALHOST; Initial
Catalog=Northwind; UserID=sa;Password=sa"

� In the last section of the code, the ConnectionString

property of the Connection object is set to the value

of strConn, and the object attempts to open a connec-

tion to the database server by invoking its Open()

method.

With objConn
.ConnectionString = strConn
.Open()

End With

These are all the steps that are required to open a con-

nection to an SQL Server database. The process is the

same for other OLE DB data sources, except that you

Interacting with Databases 29

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

have to specify an OLE DB provider as the Provider

parameter in the connection string.

The Command Object

The Command object is used to issue SQL commands to

the database. Although that means any type of SQL com-

mand, ADO .NET was optimized to handle SQL com-

mands differently. When issuing DDL (Data Definition

Language) commands or invoking a stored procedure,

you are safe using the Command object. DML (Data

Manipulation Language) commands are usually handled

by the objects inside ADO .NET’s DataAdapter compo-

nent. This section is a complete reference to the generic

Command object in ADO .NET.

Command Object Properties

CommandText

Type: String

Attribute: Read/Write

Default: “”

Description: The CommandText property gets or sets

the SQL command that is to be executed against the data

source. If you wish to execute a stored procedure, simply

assigning the name of the stored procedure to this prop-

erty is enough to define a command.

CommandTimeout

Type: Integer

Attribute: Read/Write

Default: 30

30 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Description: The CommandTimeout property is an inte-

ger value that specifies the number of seconds the Com-

mand object should wait for a command to be executed

against the database before generating an error.

CommandType

Type: System.Data.CommandType enumeration

Attribute: Read/Write

Default: Text

Possible values:

Stored Procedure: Interprets the CommandText property

as a call to execute a stored procedure in the

database

TableDirect: Interprets the CommandText property as

the name of a table inside the database. When the

Command object is executed, the entire table is

retrieved—all its data, plus its schema!

If you intend to retrieve more than one table, use a

comma-delimited list of tables without spaces as the

CommandText property. All the tables and their

schema are retrieved.

Text: Interprets the CommandText property as an SQL

command

Description: The CommandType property gets or sets

the manner through which the Command object will exe-

cute its CommandText property against the data source.

Connection

Type: System.Data.[.NET Data Provider].Connection

Attribute: Read/Write

Default: Null

Interacting with Databases 31

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Description: This property defines a valid ADO .NET

Connection object that has an open connection to the

data source against which you want to execute the

command.

Container

Type: System.ComponentModel.IContainer

Attribute: Read/Write

Default: Null

Description: Defines the component service of which

the Command object is a member.

Parameters

Type: System.Data.[.NET Data Provider].Parameter-

Collection

Attribute: Read-only

Default: Null

Description: This property returns the collection of

items being passed to the command as parameters. A

parameter is set using the CreateParameter() method.

Transaction

Type: System.Data.[.NET Data Provider].Parameter-

Collection

Attribute: Read/Write

Default: Null

Description: This property gets or sets the valid Trans-

action object during which this command will execute.

32 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Command Object Methods

Cancel()

Returns

Void

Parameters

None

Description

This method attempts to cancel a command if it is cur-

rently executing. If the command is not executing, noth-

ing happens. Similarly, if an attempt to halt execution

fails, nothing happens.

Usage

Use this method when you wish to cancel a command

that is executing.

CreateParameter()

Returns

System.Data.IDbDataParameter

Parameters

None

Description

This method returns a valid parameter for the Command

object.

Usage

Use this method whenever you wish to create a new

parameter for a Command object.

Interacting with Databases 33

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dispose()

Returns

Void

Parameters

None

Description

This method destroys the Command object.

Usage

Use this method when you no longer need the Command

object and release the resources that it was occupying.

ExecuteNonQuery()

Returns

Integer: The number of rows affected

Parameters

None

Description

This method executes an SQL query through the Con-

nection object property of the Command object.

Exception

InvalidOperationException: The connection to a data

source does not exist, or it exists but is not open.

Usage

This is the ideal method to call whenever you issue a

DDL command or update without the use of a DataSet.

For such commands, the return value is –1.

34 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

When used with DML commands such as INSERT,

UPDATE, and SELECT, the method returns the number

of rows that were affected by the command.

ExecuteReader()

Returns

System.Data.IDataReader

Parameters

None

Description

This method executes the CommandText property of the

Command object through the Connection object referred

to by the Command’s Connection property. Then it builds

a valid IDataReader object with the resulting row set.

Usage

Use this method when you need to create and populate a

DataReader object.

ExecuteScalar()

Returns

System.Object: A data value

Parameters

None

Description

This method executes the CommandText property of the

Command object through its Connection object. Then it

returns the value in the first column of the first row of

the resulting row set.

Interacting with Databases 35

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

Use this method when you need to obtain a single value

from the database. A typical example would be to obtain a

count of all records in the Customer table.

ExecuteXmlReader()

Returns

System.Xml.XmlReader: A data value

Parameters

None

Description

This method executes the CommandText property of the

Command object through its Connection object. Then it

returns data as XML and populates a valid XmlReader

object.

Usage

Use this method when you need to retrieve data as XML.

GetType()

Returns

System.Type: A value indicating the type of the Command

object

Parameters

None

Description

This method returns a valid type for the Command

object.

36 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

ToString()

Returns

String: A valid representation of the Command object as

a string

Parameters

None

The DataReader Object

The DataReader object is used to read data that has been

retrieved from a database. While the Command and

DataAdapter objects are used to issue database com-

mands, the DataReader object is used to read retrieved

data values. Once the values are inside this object, sev-

eral other tasks can be achieved, such as:

� Populating a DataSet with retrieved data

� Populating a data binding control on a Windows Form

or Web Form

� Assigning database values to client variables

The DataReader object should be the main interface

between client objects and MTOs (Middle Tier Objects)

because this object is equipped with some highly opti-

mized functionality for data reading. The following sec-

tion is a complete reference to the members of the

DataReader object.

DataReader Properties

Depth

Type: Integer

Attribute: Read-only

Interacting with Databases 37

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Default: 0

Description: This property obtains a valid count of the

number of nesting rows for the current row.

FieldCount

Type: Integer

Attribute: Read-only

Default: –1

Description: This property obtains the number of col-

umns present in the current row that is being read.

IsClosed

Type: Boolean

Attribute: Read-only

Default: Null

Description: This property indicates whether the

DataReader is closed or opened. It is used mostly to test

the availability of data inside the object before issuing

instructions to read the data.

Item(<column_name as string> or
<column_ordinal as integer>)

Type: The native type of the item

Attribute: Read-only

Default: Null

Description: This property returns the value of the col-

umn specified by column_name or column_ordinal of the

current row.

38 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

RecordsAffected

Type: Integer

Attribute: Read-only

Default: 0

Description: This property indicates how many records

were affected by the execution of an SQL statement or

changed on the client. The property returns 0 if there

were no affected records or the SQL statement failed.

–1 is returned for all SELECT statements.

DataReader Methods

Close()

Returns

Void

Parameters

None

Description

This method closes the DataReader object and frees up

client resources.

CreateObjRef()

Returns

System.Runtime.Remoting.ObjRef: The returned object

contains all the required information to generate a

proxy that can communicate with another object

residing remotely.

Interacting with Databases 39

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

System.Type: A valid type for the object to be created

Description

Call this method when you need to reference a valid

object that contains all the required information to gener-

ate a proxy for the DataReader that will allow it to com-

municate with another object residing remotely. This

method is used if you want the DataReader to communi-

cate with remote objects.

Equals()

Returns

Boolean

Parameters

obj: System.Object; any object inherited from the Sys-

tem.Object class

Description

Determines whether obj is equal to the DataReader

object

Usage

This method will always return False if you pass an

object that is not of the same type as the DataReader

object. It is useful when you need to test whether two

DataReader objects are holding exactly the same values

from the same source.

GetBoolean()

Returns

Boolean: The value of the specified column at the cur-

rent row as a Boolean value

40 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not Boolean, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

GetByte()

Returns

Byte: The value of the specified column at the current

row as a byte value

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not byte, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

GetBytes()

Returns

Integer: The count of Byte values read into the buffer

parameter

Interacting with Databases 41

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

dataIndex: Long; the index within the column from

which the method will start reading Byte values into the

buffer

buffer(): Byte; an array of type Byte that will hold the

stream of byte values to be read

bufferIndex: Integer; the ordinal inside the buffer into

which the first Byte value will be read

length: Integer; the maximum number of byte values to

copy into the buffer

Description

This method is used to obtain a stream of byte values

from a column in the DataReader.

GetChar()

Returns

Char: The value of the specified column at the current

row as a Char (single character) value.

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not Char, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

42 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

GetChars()

Returns

Integer: The count of Char values read into the buffer

parameter

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

dataIndex: Long; the index within the column from

which the method will start reading Byte values into the

buffer

buffer(): Char; an array of type Byte that will hold the

stream of Byte values to be read

bufferIndex: Integer; the ordinal inside the buffer into

which the first Byte value will be read

length: Integer; the maximum number of Byte values to

copy into the buffer

Description

This method is used to obtain a stream of Char values

from a column in the DataReader.

GetDataTypeName()

Returns

String: The name of the type of column specified by col-

umn ordinal parameter i

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Interacting with Databases 43

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Description

This method obtains the name of the type of column

specified by the i parameter. It throws an IndexOutOf-

RangeException exception if the value specified by i was

less than zero or greater than the FieldCount property of

the DataReader object.

GetDateTime()

Returns

System.DateTime: The value of the specified column at

the current row as a DateTime object

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not DateTime, the method does

not attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an IndexOut-

OfRangeException exception.

GetDecimal()

Returns

System.Decimal: The value of the specified column at the

current row as a Decimal object

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

44 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Description

If the column’s type is not Decimal, the method does

not attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an IndexOut-

OfRangeException exception.

GetDouble()

Returns

System.Double: The value of the specified column at the

current row as a System.Double object

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not Double, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an

IndexOutOfRangeException exception.

GetFieldType()

Returns

System.Type: The valid type of the specified column as a

System.Type object

Interacting with Databases 45

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

This method is used to obtain a valid System.Type value

that matches the data type of the field in the database.

GetFloat()

Returns

System.Single: The value of the specified column at the

current row as a System.Single object

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not Single, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an IndexOut-

OfRangeException exception.

GetGuid()

Returns

System.Guid: The value of the specified column at the

current row as a System.Guid object representing a

globally unique identifier value

46 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not Guid, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an IndexOut-

OfRangeException exception.

GetHashCode()

Returns

Integer: The integer value indicating the hash code of the

current row

Parameters

None

Description

Use this method to obtain the unique hash code for the

DataReader.

GetInt16()

Returns

System.Int16: The value of the specified column at the

current row as a System.Int16 object (a 16-bit

signed integer value)

Interacting with Databases 47

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not Int16, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an IndexOut-

OfRangeException exception.

GetInt32()

Returns

System.Int32: The value of the specified column at the

current row as a System.Int32 object (a 32-bit

signed integer value)

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not Int32, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an

IndexOutOfRangeException exception.

48 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

GetInt64()

Returns

SystemInt64: The value of the specified column at the

current row as a System.Int64 object (a 64-bit

signed integer value)

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not Int64, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an IndexOut-

OfRangeException exception.

GetName()

Returns

String: The value of the name of the specified column at

the current row as a String object

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

The GetName() method returns the name of the DataSet

component and is useful when you want to refer to a

DataSet by its name rather than using a reference

variable.

Interacting with Databases 49

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

GetOrdinal()

Returns

Integer: The ordinal of the column as an Integer value

Parameters

Name: String; the name of the column

Description

If the name specified is not a valid column name, the

method throws an IndexOutOfRangeException

exception.

GetSchemaTable()

Returns

System.Data.DataTable: A DataTable object containing

the schema information for the columns of the

DataReader

Parameters

None

Description

If the DataReader is closed, the method throws an

InvalidOperationException exception.

GetString()

Returns

String: The value of the specified column at the current

row as a String object

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

50 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Description

If the column’s type is not Int64, the method does not

attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an

IndexOutOfRangeException exception.

GetTimeSpan()

Returns

System.TimeSpan: The value of the specified column at

the current row as a TimeSpan object

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the column’s type is not TimeSpan, the method does

not attempt a conversion and throws an InvalidCast-

Exception exception. Be careful to test for a null value

using the IsDBNull() method before attempting to read

using this method.

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an

IndexOutOfRangeException exception.

GetValue()

Returns

System.Object: The value of the specified column at the

current row as a System.Object object

Interacting with Databases 51

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

Description

If the i parameter is greater than the FieldCount prop-

erty or less than zero, the method throws an IndexOut-

OfRangeException exception.

GetValues()

Returns

Integer: The count of Char values read into the buffer

parameter

Parameters

values(): Object; an array of type Object that will hold

the stream of Object values to be read

Description

This method is used to obtain a stream of Object values

from a column in the DataReader. Be careful to test for a

null value using the IsDBNull() method before attempt-

ing to read using this method.

IsDBNull()

Returns

Boolean: A Boolean value indicating whether the value

at the specified column in the current row is equal

to a System.DBNull object. It’s True if the value is

null and False otherwise.

Parameters

i: Integer; an index of the column. The DataReader

contains a zero-based column array.

52 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Description

Use this method to check whether the value that you are

about to read is null or not.

NextResult()

Returns

Boolean: A Boolean value indicating whether there are

any result sets from the current position.

Parameters

None

Description

Use this method when dealing with a batch of SQL state-

ments that returned multiple sets of results. If this

method returns True, there is a result set, and the

method moves the DataReader object to its position.

Read()

Returns

Boolean: A Boolean value indicating whether there are

any rows in the DataReader. If this value is True,

the DataReader has more rows and the position is

shifted to the next row.

Parameters

None

Description

Use this method to test whether there are any rows

inside the DataReader object, and move to the next row.

The default location of the DataReader is prior to the

first row, so you will have to call this method before you

attempt any read operation on the DataReader.

Interacting with Databases 53

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: .NET data providers such as the SQL Server
.NET Data Provider provide several optimized meth-
ods that are equipped with functionality to read
data of the types specific to that particular provider.

The DataAdapter Object

The DataAdapter object is used as a bridge between

DataSet objects inside client applications and the data

sources from which they were populated. The two key

functions of the DataAdapter object are to update the

data source with data inside the DataSet and vice versa.

This means that the DataAdapter is implemented to per-

form both retrieve and update operations on data

sources. The generic System.Data.Common.DbData-

Adapter class is quite limited in terms of the operations

that it can perform. For this reason, we will look at a

highly optimized DataAdapter class—the Sys-

tem.Data.SqlClient.SqlDataAdapter class.

Note: The properties and methods that are not
inherited from the generic DataAdapter class are
marked appropriately.

SqlDataAdapter Constructor

The constructor is worth mentioning for the Data-

Adapter object. It overloads the generic constructor of

the DbDataAdapter class and allows your application

more flexibility to initialize a communication channel

between client and database objects.

Taking advantage of the robust OOP concept of polymor-

phism, you can initialize a DataAdapter object in four dif-

ferent ways depending on the situation.

54 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

New()

Initializing a DataAdapter object this way simply creates

a new instance of the DataAdapter object in memory.

This is recommended when you are coding in a situation

where you are not exactly sure what type of communica-

tion will take place between the data source and client

ADO .NET objects.

Example:

Dim objDA as New System.Data.SqlClient.SqlDataAdapter()

New(System.Data.SqlClient.SqlCommand)

This type of initialization creates an instance of the

DataAdapter object and initializes its SelectCommand

property as a reference to the SqlCommand object

passed as the parameter. Note that the SelectCommand

property is not an initialized, new instance of SqlCom-

mand in this case; rather it is a reference to the SqlCom-

mand object that was passed as a parameter. This means

that the two objects are pointing to the same value in

memory.

The database command referenced by the SelectCom-

mand property is directly executed against the database,

and the result set is stored inside the DataAdapter

object.

This type of initialization is used when you already know

what type of command needs to be executed against the

database and the command is already prepared.

Example:

Dim objConn as SqlConnection = New SqlConnection
("DataSource=LOCALHOST;Database=Northwind;
UserID=sa;password=sa")

Dim objCmd as SqlCommand = New SqlCommand("SELECT * FROM

Employees")
Dim objDA as SqlDataAdapter = New SqlDataAdapter(objCmd)

Interacting with Databases 55

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

New(command as String, connection as
String)

This type of initialization creates an instance of the

DataAdapter object by specifying a command text and

connection text that it uses to connect and issue com-

mands to a database.

The DataAdapter object first connects to the database

using the parameters contained within the connection

string parameter. To perform that action, it utilizes an

internally optimized SqlConnection object.

The command parameter is used to issue an SQL com-

mand to the database through the object’s SelectCom-

mand property. The SQL command must be an SQL

SELECT command or a command that executes a stored

procedure expected to return results.

Example:

Dim strCommand as String
Dim strConn as String

strConn = "DataSource=LOCALHOST;Database=Northwind;
UserID=sa;password=sa"

strCommand = "SELECT * FROM Employees"

Dim objDA as SqlDataAdapter = New SqlDataAdapter
(strCommand, strConn)

New(command as String, connection as
SqlClient.SqlConnection)

This type of initialization creates an instance of the

DataAdapter object by specifying a command text and a

valid connection object that it uses to connect and issue

commands to a database.

The DataAdapter object uses the connection parameter

to connect to the database. Note that the connection

56 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

parameter must already contain an open connection to

the database.

The command parameter is used to issue an SQL com-

mand to the database through the object’s SelectCom-

mand property. The SQL command must be an SQL

SELECT command or a command that executes a stored

procedure expected to return results.

Example:

Dim strCommand as String
Dim objConn as SqlConnection = New SqlConnection

("DataSource=LOCALHOST;Database=Northwind;
UserID=sa;password=sa")

strCommand = "SELECT * FROM Employees"

Dim objDA as SqlDataAdapter = New
SqlDataAdapter(strCommand, objConn)

SqlDataAdapter Properties

AcceptChangesDuringFill

Type: Boolean

Attribute: Read/Write

Default: Null

Description: This property is used to determine

whether the DataRow method AcceptChanges() is called

when a new DataRow is added to a DataTable within the

DataAdapter object.

If this property is set to True, the AcceptChanges()

method is called immediately after every DataRow object

is added to the DataTable object.

Interacting with Databases 57

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

ContinueUpdateOnError

Type: Boolean

Attribute: Read/Write

Default: Null

Description: This property is used to determine

whether the DataAdapter should generate an exception

when an error occurs while updating a row in the data-

base or continue with the update of the same row and

any other rows.

When this property is set to True, the DataAdapter

object continues updating rows and does not generate

any exception or error messages when an error occurs.

DeleteCommand

Type: SqlCommand

Attribute: Read/Write

Default: Null

Description: This property is a reference to an

SqlCommand object that is optimized to delete data from

a database. The CommandText property of that object

must be either an SQL statement that deletes data from

a database or a call to a stored procedure that performs

this function. This is important because it is impossible

to return values using this property. A typical scenario

would be to prepare the SqlCommand object in code and

then assign it to this property.

58 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

InsertCommand

Type: SqlCommand

Attribute: Read/Write

Default: Null

Description: This property is a reference to an

SqlCommand object that is optimized to insert data into a

database. The CommandText property of that object

must be either an SQL statement that inserts data from a

database or a call to a stored procedure that performs

this function. This is important because it is impossible

to return values or delete data using this property. A typ-

ical scenario would be to prepare the SqlCommand object

in code and assign it to this property.

MissingMappingAction

Type: MissingMappingAction enumeration

Attribute: Read/Write

Default: Null

Description: This property is used to evaluate which

action the DataAdapter performs when data that it is

given does not have a valid mapping or match a

DataTable object inside a DataSet object. The possible

values are:

Error: An exception is generated by the DataAdapter.

Ignore: The DataAdapter ignores the error and inserts a

null value into the column.

Passthrough: The DataAdapter causes the DataSet to

create a column or table matching the unmatched

value.

Interacting with Databases 59

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

MissingSchemaAction

Type: MissingSchemaAction Enumeration

Attribute: Read/Write

Default: Null

Description: This property is used to evaluate which

action the DataAdapter performs when data that it is

given does not have a valid mapping to any existing

DataTable or DataColumn object inside a DataSet. In

other words, the DataTable or DataColumn that is

referred to is missing. The possible values are:

Add: The DataAdapter adds the DataColumn or

DataTable object to the DataSet.

AddWithKey: The DataAdapter recreates the schema for

the DataSet so that it incorporates information for

the missing DataTable or DataColumn object.

Ignore: The DataAdapter ignores the missing Data-

Column or DataTable object(s) that the code is

referring to. In this scenario, data will be lost.

Error: Generates an exception

SelectCommand

Type: SqlCommand

Attribute: Read/Write

Default: Null

Description: This property is a reference to an

SqlCommand object that is optimized to retrieve data

from a database. The CommandText property of that

object must be either an SQL statement that retrieves

data from a database or a call to a stored procedure that

performs this function. This is important because it is

impossible to delete or insert data using this property. A

60 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

typical scenario would be to prepare the SqlCommand

object in code and assign it to this property.

TableMappings

Type: DataTableMappingCollection

Attribute: Read-only

Default: Null

Description: This property is a collection of all the avail-

able table mapping information that is present between

DataTable objects within a DataSet and the Table objects

in the database from which data has just been retrieved

by the DataAdapter. This data is about to be filled into

the DataSet.

UpdateCommand

Type: SqlCommand

Attribute: Read/Write

Default: Null

Description: This property is a reference to an

SqlCommand object that is optimized to update data from

a DataSet into a database. The CommandText property of

that object must be either an SQL statement that

updates data into a database or a call to a stored proce-

dure that performs this function. This is important

because it is impossible to retrieve, delete, or insert data

using this property. A typical scenario would be to pre-

pare the SqlCommand object in code and assign it to this

property.

Interacting with Databases 61

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

SqlDataAdapter Methods

CreateObjRef()

Returns

System.Runtime.Remoting.ObjRef: The returned object

contains all the required information to generate a

proxy that can communicate with another object

residing remotely.

Parameters

System.Type: A valid type for the object to be created

Description

Call this method when you need a reference to a valid

object that contains all the required information to gener-

ate a proxy for the DataAdapter, which will allow it to

communicate with another object residing remotely. This

method is used if you want the DataAdapter to communi-

cate with remote objects.

Dispose()

Returns

Void

Parameters

None

Description

This method releases all the processing resources that

the DataAdapter object holds.

62 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Fill()

Returns

Integer: The number of rows that have been added or

updated inside the DataSet

Parameters

This method has a very solid polymorphic mechanism.

The actions performed by this method hinge on the type

of parameters passed to it. The following gives a list of

parameters and their corresponding descriptions.

System.Data.DataTable: A DataTable object into which

data is to be copied.

Use this parameter only when you need to fill a single

DataTable object for use on the client.

System.Data.DataSet: A DataSet object into which data is

to be copied.

Use this parameter when you need to fill an entire

DataSet object for use on the client. A typical scenario is

when the DataAdapter contains multiple result sets.

System.Data.DataSet: A DataSet object into which data is

to be copied.

String: A string containing the name of a source table

that contains the mapping information for the

retrieved result set.

Use this parameter when you need to fill an entire
DataSet object for use on the client. The schema of
the database will also be created inside the DataSet
using the information from the source table. A typi-
cal scenario is when the DataAdapter contains mul-
tiple result sets and you also want to put a schema
inside the DataSet.

Interacting with Databases 63

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

System.Data.DataSet: A DataSet object into which data is

to be copied

Integer: The record at which you want to start populating

Integer: The maximum number of records to populate

String: A string containing the name of a source table

that contains the mapping information for the

retrieved result set

FillSchema()

Returns

System.Data.DataTable: A valid DataTable object into

which the DataAdapter populates a valid schema

Parameters

This method also has a very solid polymorphic mecha-

nism. The actions performed by this method hinge on

the type of parameters passed to it. The following gives a

list of parameters and their corresponding descriptions.

System.Data.DataTable: A DataTable object into which

the schema is copied

SchemaType: A valid value from the SchemaType

enumeration.

Use this parameter only when you need to fill a
single DataTable object to contain the schema in-
formation of a result set.

System.Data.DataSet: A DataSet object into which the

schema is copied

SchemaType: A valid value from the SchemaType

enumeration.

Use this parameter only when you need to fill a
single DataSet object to contain the schema infor-
mation of a result set.

64 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

System.Data.DataSet: A DataSet object into which to

copy the schema

SchemaType: A valid value from the SchemaType

enumeration

String: A string value containing the name of a source

table that contains the mapping information for the

retrieved result set.

Use this parameter only when you need to fill a
single DataSet object to contain the schema infor-
mation of a result set based on table mapping infor-
mation.

Update()

Returns

Integer: An integer value indicating the number of rows

that were affected by the Update() method

Parameters

This method also has a very solid polymorphic mecha-

nism. The actions performed by this method hinge on

the type of parameters passed to it. The following gives a

list of parameters and their corresponding descriptions.

System.Data.DataSet: The DataSet that you wish to use

to update a data source.

Passing this parameter instructs the method to update

the data source with the data values found inside the

DataSet object.

System.Data.DataRow: An array of DataRow objects that

you wish to use to update a data source.

Passing this parameter instructs the method to update

the data source with the data values found inside an array

of DataRow objects.

Interacting with Databases 65

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

System.Data.DataTable: The DataTable that you wish to

use to update a data source.

Passing this parameter instructs the method to update

the data source with the data values found inside the

DataTable object.

System.Data.DataSet: The DataSet that you wish to use

to update a data source.

String: The name of the source table that is used for

table/DataColumn mapping.

Passing this parameter instructs the method to up-
date the data source with the data values found in-
side the DataSet object. If table mapping is
necessary, the table specified by the second param-
eter is used for that purpose.

Summary

This chapter is your complete reference to the data-

base—to client objects that are part of the ADO .NET

class library. As you can clearly see, ADO .NET provides

you with a very powerful set of objects used to communi-

cate with databases. If you want a completely practical

tutorial of how to interact with databases in ADO .NET,

read Chapter 7.

The next chapter is also a theoretical reference to the

objects within ADO .NET that allow you, the developer,

to take control of data manipulation in your client

application.

66 Chapter 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 3

Data Manipulation

In This Chapter

In the previous chapter, you read about the ADO .NET

components that allow .NET applications to interact with

data sources. A complete reference was provided for the

Connection, Command, DataReader, and DataAdapter

components. These components are the primary inter-

face to data sources in .NET programming. This chapter

is about the second group of ADO .NET components that

enables developers to manipulate data inside client

applications:

� DataSet

� DataTable

� DataRow

� DataView

� DataColumn

A complete reference is available for the DataSet

component.

Although these components are implemented as inde-

pendent and stand-alone classes, they are all tightly inte-

grated into the DataSet, which is the most instrumental

part of the disconnected data access architecture of ADO

.NET. For the sake of clarity and organization, the refer-

ence sections of this chapter treat each component inde-

pendently. While a complete reference is provided on the

DataSet component, the other components are briefly

67

TEAM LinG - Live, Informative, Non-cost and Genuine!

covered by the end of the chapter. Chapter 8 provides a

more practical view of how all these components are

organized to tell one story inside the DataSet compo-

nent. It is important to keep in mind that the DataSet is

an optimized and organized way to make the other com-

ponents work together. For you to better understand the

architectural design, the chapter focuses on the struc-

tural design of the DataSet component.

The DataSet Component

What is the DataSet?

It seems safe to think about the DataSet component as

an in-memory form of a database residing inside a client

application instead of being hosted by a database server.

In fact, sticking to the strict design goals of the compo-

nent, this is true. The data manipulation components

listed above are all client representations of the database

objects one would come across during the course of data-

base design. The database becomes a proper analogy for

the DataSet because, just as the former organizes its

objects, the DataSet similarly provides a seamlessly inte-

grated and structured code environment for all the client

data components to interact concertedly. By exposing the

data in a way similar to how it would appear inside the

database, the DataSet component brings the true power

of database programming to the web-distributed develop-

ment model.

68 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

When Do You Need the DataSet?

You do not need to utilize a DataSet component for every

client application. Consider the case when you simply

need a read-only and forward-only list of items to place in

a ComboBox control on a Web Form object. Creating a

DataSet to perform this kind of task is a waste of client

resources and may have a huge impact on application

performance. You may be thinking about populating a

DataTable object for such as task. But even then,

resources are wasted. In this case, it is better to use a

DataReader component—covered in Chapter 2—and

loop through its set of retrieved rows to place items into

the control.

In general, you should use a DataSet when you need to

perform the following tasks:

� Retrieve data that you plan to save back to the data-

base. The DataSet and DataAdapter components

have a seamless interoperability architecture that

allows the DataSet to interact with the database

without having any knowledge of the data source

(hence the notion of Disconnected Data Source that

is central to the .NET Framework’s support for dis-

tributed application development).

� Convert data from a relational form to a hierarchical

form, such as XML. ADO .NET provides tight inte-

gration with XML—covered in Chapter 6, “Practical

ADO .NET Programming (Part One).”

� Combine data from different data sources. The

DataSet component allows you to combine data from

a limitless number of sources.

� Post data to remote components across the Internet.

It is possible for remote components to communicate

via DataSet components or web services created

from DataSet components.

Data Manipulation 69

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

How is the DataSet Organized?

Throughout the rest of this chapter, the component that

is central to our discussion is the DataSet component. All

the components shown in Figure 3-1 are implemented

independently. However, it is important to obtain a solid

understanding of the beauty of the DataSet; therefore, all

the components are described as they appear in the

object model of the DataSet. You will notice that there is

not much code in this chapter. This is a reference chapter

with a theoretical approach to explaining client data

manipulation. Since practical exposure is also very

important, Chapter 6 had been dedicated entirely to pro-

viding practical experience. Chapter 6 provides informa-

tion about how to:

70 Chapter 3

Figure 3-1: The organization of the DataSet component

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Populate the DataSet

� Read DataSet content

� Save DataSet content

Before the subtle components within the DataSet are

covered, let’s examine the properties and methods of the

DataSet itself.

Core DataSet Properties

CaseSensitive

Type: Boolean

Attribute: Read/Write

Default: “”

Description: The CaseSensitive property of the DataSet

object defines whether any string comparison performed

on any data value(s) within the DataSet would be case

sensitive or otherwise.

Possible values:

TRUE: String comparisons performed on the DataSet

values are case sensitive.

FALSE: String comparisons performed on the DataSet

values are not case sensitive.

Container

Type: System.ComponentModel.Container

Attribute: Read-only

Default: “”

Description: The Container property of the DataSet

object obtains a valid reference to the object that con-

tains the DataSet.

Data Manipulation 71

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

DataSetName

Type: String

Attribute: Read/Write

Default: “”

Description: The DataSetName property of the DataSet

object is used to specify a name for the DataSet object.

Setting or getting a name for a DataSet is important if

you wish to refer to the particular DataSet by name in

the code.

DefaultViewManager

Type: System.Data.DataViewManager

Attribute: Read-only

Default: “”

Description: The DefaultViewManager property of the

DataSet object is used to obtain a reference to the default

view and organization of data within the DataSet. A Data-

ViewManager object maintains a collection of views for

all the DataTable objects within a DataSet.

DesignMode

Type: Boolean

Attribute: Read-only

Default: “”

Description: The DesignMode property of the DataSet

object is used to determine whether the particular

DataSet is in design mode.

72 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

EnforceConstraints

Type: Boolean

Attribute: Read/Write

Default: “”

Description: The EnforceConstraints property is used to

indicate whether the DataSet should enforce its defined

constraints on data values that it receives when it is

being updated. As an in-memory data source, the

DataSet component can have constraints defined similar

to a data source on a database server. Each DataTable

component that is part of a particular DataSet can have

its constraints defined using the DataTable’s Constraints

property.

ExtendedProperties

Type: System.Data.PropertyCollection

Attribute: Read/Write

Default: “”

Description: The ExtendedProperties property is used

to return a collection of custom properties that has been

defined for the particular DataSet component. It is also

possible to add a custom property to the DataSet using

this property.

HasErrors

Type: Boolean

Attribute: Read-only

Default: False

Description: The HasErrors property is used to indicate

whether there are any error(s) in any row of a DataTable

component inside the particular DataSet component.

Data Manipulation 73

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Locale

Type: System.Globalization.CultureInfo

Attribute: Read

Default: Null

Description: The Locale property is used to obtain infor-

mation about the locale of the user’s machine. This is a

very useful property, as it allows you to define custom

actions based on the user’s locale preferences.

Namespace

Type: String

Attribute: Read/Write

Default: “”

Description: The Namespace property is used to indi-

cate the name of the namespace to which the particular

DataSet belongs. This property is most useful when you

want to use XML functions to populate an XML docu-

ment from one or more DataSet components.

Prefix

Type: String

Attribute: Read/Write

Default: “”

Description: The Prefix property is used to indicate an

XML prefix of the DataSet component’s namespace

when an XML document is created. The Namespace

property should be set prior to defining the Prefix

property.

74 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Relations

Type: System.Data.DataRelationCollection

Attribute: Read-only

Default: Empty Collection

Description: The Relations property is a collection of

DataRelation components that are used within the

DataSet component to define the relations between the

DataSet’s DataTable components.

Site

Type: System.ComponentModel.ISite

Attribute: Read/Write

Default: Null

Description: The Site property is used to indicate a valid

ISite reference for the DataSet. The ISite class enables

seamless communication and integration between a

.NET component and its container, such as a parent

class, Windows Form, or Web Form component.

Tables

Type: System.Data.DataTableCollection

Attribute: Read-only

Default: Null

Description: The Tables property is used to obtain a col-

lection of all DataTable component(s) that are available

within the DataSet component. If no DataTable compo-

nent is available within the DataSet, the property has a

value of NULL.

Data Manipulation 75

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

As you saw in Figure 3-1, the DataTableCollection com-

ponent within the DataSet has an entire object model of

its own that allows seamless manipulation of data within

the DataTable components of a DataSet. This collection

and its content are fully covered later in the chapter.

Core DataSet Methods

AcceptChanges()

Returns

None

Parameters

None

Description

This method instructs the DataSet component to commit

all the changes that have been made to its data values

since the DataSet was last populated or the last call to

this same method was issued.

Usage

Call this method to commit all the changes that have

been made to a DataSet component. This is useful before

you use the DataSet to perform any data transmission to

an XML document, a remote object, or the data source

through the DataAdapter.

BeginInit()

Returns

None

76 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

None

Description

This method initializes a DataSet component.

Usage

Call this method to initialize a DataSet component when

it is contained by another component, a Web Form, or a

Windows Form object. Automatic initialization does not

occur in any of the three components.

Clear()

Returns

None

Parameters

None

Description

This method removes all the rows of all DataTable com-

ponents within the DataSet component. Thus, it empties

the DataSet component of all its data values.

Usage

Call this method when an ultimate housecleaning is

needed for a DataSet component. Note that a call to this

method does not mean that all DataTables or any of their

relations are deleted from the DataSet. These would

remain intact until you alter them or destroy the DataSet

component.

Data Manipulation 77

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Clone()

Returns

System.Data.DataSet: A component that is a direct clone

of the particular DataSet

Parameters

None

Description

This method is used to create a new DataSet component

that is similar to the particular DataSet on which the

method is called.

Usage

Use this method when you need to clone the current

DataSet component. Note that when you clone the

DataSet, no data values are copied across into the new

DataSet component created. Only the structure of the

DataSet is copied into the new DataSet. If you need to

copy data and structure, call the Copy() method.

Copy()

Returns

System.Data.DataSet: A component that is a direct clone

and has all the data values of the particular DataSet

Parameters

None

Description

This method is used to create a new DataSet component

that is similar to and contains the same data values as the

particular DataSet on which the method is called.

78 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

Use this method when you need to clone the current

DataSet component being used and copy all of its data

values into the clone. If you need to create a clone with-

out the data values, call the Clone() method.

Dispose()

Returns

None

Parameters

None

Description

This method is used to destroy the DataSet component

and release the system processing resources that it

holds.

Usage

This method is useful to effectively manage client

resources that a DataSet component is currently

utilizing.

EndInit()

Returns

None

Parameters

None

Description

This method stops the initialization of a DataSet

component.

Data Manipulation 79

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

Call this method to stop the initialization of a DataSet

component when it is contained by another component, a

Web Form, or Windows Form object.

GetChanges()

Returns

System.Data.DataSet: A DataSet component that con-

tains all the changes that had been made since the

last call was made to the AcceptChanges() method

or the DataSet was loaded

Parameters

None

Description

This method is used to create a new DataSet component

that holds all the changes that had been made to the cur-

rent DataSet component.

Usage

Use this method when you need to create a DataSet

component that contains the changes made by a user to

the current DataSet component. This is a good way to

allow the application to support undo functionality on the

DataSet.

GetService()

Returns

System.Object: An object or component that is a service

80 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Parameters

System.Object: An object or component that implements

the System.IServiceProvider interface

Description

This method is used to obtain a reference to another

component or object that is provided as a service by

either the DataSet component or the component or

object that is the container of the DataSet.

Usage

Use this method when you need to reference a service in

your code that would perform some form of desired task

or provide data.

GetType()

Returns

System.Type: A valid data type

Parameters

None

Description

This method is used to obtain knowledge of the data type

of any component or object in the .NET Framework. In

the case of the DataSet, it would return System.DataSet.

Usage

The GetType() method is a generic method inherited

from the System.Object class. It returns a valid Sys-

tem.Type value that is the data type of the object on

which it is called.

Data Manipulation 81

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

GetXML()

Returns

String: A string of the XML representation of the

DataSet’s data

Parameters

None

Description

This method is used to obtain a string of characters for-

matted as XML that is the representation of all the data

that the DataSet component contains.

Usage

Use this method when you wish to obtain a DataSet’s

data as a string of XML tags. Note that by using this

method, you are simply obtaining an XML string. To

write data to a file, you would have to use the Write-

XML() method. To obtain a full comprehensive overview

of XML integration with ADO .NET, read Chapter 5,

“XML Integration with ADO .NET.”

GetXmlSchema()

Returns

String: A string of the XSD schema for the XML that

would represent the DataSet’s data

Parameters

None

Description

This method is used to obtain a string of characters for-

matted as XSD schema that is the schema of the XML

82 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

that is the representation of all the data that the DataSet

component contains.

Usage

Use this method when you wish to obtain a DataSet’s

XML schema as a string. Note that by using this method,

you are simply obtaining a string. To write the schema to

a file, you would have to use the WriteXMLSchema()

method. To obtain a full comprehensive overview of

XML integration with ADO .NET, read Chapter 5.

HasChanges()

Returns

Boolean: A value that indicates whether there have been

any changes made to the DataSet component

Parameters

The default method does not take any parameters. There

is an overload to this method that takes the following

parameter(s):

System.Data.DataRowState: This enumeration defines the

type of changes that you are looking for. Since the

HasChanges() method acts on DataRow components of

the DataSet’s DataTable components, the DataRowState

enumeration defines the state of a DataRow component.

Here is a list of possible values of DataRowState and the

resulting effect on the HasChanges() method.

Added: The HasChanges() method returns True if there

has been any DataRow component(s) added to any

DataTable component(s) of the DataSet.

Deleted: The HasChanges() method returns True if there

has been any DataRow component(s) deleted from

any DataTable component(s) of the DataSet.

Data Manipulation 83

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Detached: The HasChanges() method returns True if

there has been any DataRow component(s)

detached from any DataTable component(s) of the

DataSet.

Modified: The HasChanges() method returns True if

there has been any DataRow component(s)

amended in any DataTable component(s) of the

DataSet.

Unchanged: This is a bit confusing. You expect the

HasChanges() method to return True only if

changes have been made to the DataSet. If

Unchanged is passed as a filter, the method will

return True if the DataSet has not changed and

False if it has! This might have some undesirable

effect on your application.

Description

This method returns a value indicating whether the data

inside the DataSet component has changed from the last

time that the AcceptChanges() method was called on the

DataSet.

Usage

Use this method to check whether the DataSet contains

new data. It is usually very useful before an update

occurs.

InferXmlSchema()

Returns

None

Parameters

The parameter list that is passed totally depends on the

overloaded method that you wish to call:

84 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Overload 1:

System.IO.Stream: This is a Stream component or any

other component inheriting from it. A Stream com-

ponent provides the most generic services for

conducting input/output operations with a sequence

of bytes.

The DataSet would read its schema information
from this Stream component.

String(): An array of String values that contain the

namespace URIs that are to be excluded from the

schema inference process

Overload 2:

String: A String value that represents the fully qualified

path of a file from which the DataSet would infer its

schema

String(): An array of String values that contain the

namespace URIs that are to be excluded from the

schema inference process

Overload 3:

System.IO.TextReader: This is a TextReader component

or any other component inheriting from it. A

TextReader component provides the most generic

services for reading a sequence of characters.

The DataSet would read its schema information
from this TextReader component.

String(): An array of String values that contain the

namespace URIs that are to be excluded from the

schema inference process

Overload 4:

System.Xml.XmlReader: An XmlReader component or

any other component inheriting from it. An

Data Manipulation 85

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

XmlReader component provides forward-only

access to XML data.

The DataSet would read its schema information
from this XmlReader component.

To obtain a full comprehensive overview of XML
integration with ADO .NET, read Chapter 5, “XML
Integration with ADO .NET.”

String(): An array of String values that contains the

namespace URIs that are to be excluded from the

schema inference process

Description

This method is used to infer the XML schema from a

TextReader or XmlReader component or a file into the

DataSet.

Usage

Use this method when you need to infer the XML

schema of a TextReader component or a file into the

DataSet.

Merge()

Returns

None

Parameters

The parameter list that is passed totally depends on the

overloaded method that you wish to call:

Overload 1:

System.Data.DataRow(): This is an array of DataRow

components or any other component inheriting

from it.

86 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

The DataSet would merge its data with the data
provided by this array. Merging in this case would
be that the DataSet imports data from the DataRow
component(s).

Overload 2:

System.Data.DataSet: This is a DataSet component or

any other component inheriting from it.

The DataSet on which this method is called would
merge its data and schema with those provided by
this DataSet.

This is a very powerful way to refresh data inside a
client application.

Overload 3:

System.IO.TextReader: This is a TextReader component

or any other component inheriting from it. A

TextReader component provides the most generic

services for reading a sequence of characters.

The DataSet would read its schema information
from this TextReader component.

String(): An array of String values that contains the

namespace URIs that are to be excluded from the

schema inference process

Overload 4:

System.Xml.XmlReader: An XmlReader component or

any other component inheriting from it. An

XmlReader component provides forward-only

access to XML data.

The DataSet would read its schema information
from this XmlReader component.

To obtain a full comprehensive overview of XML
integration with ADO .NET, read Chapter 5, “XML
Integration with ADO .NET.”

Data Manipulation 87

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

String(): An array of String values that contains the

namespace URIs that are to be excluded from the

schema inference process

Description

Calling the Merge() method causes the DataSet to

import the data from the objects that are passed as

parameters and merge it with its own data. This is a good

way to merge data from two separate DataSet compo-

nents that have the same schema. Most merge opera-

tions are done before the database is updated.

ReadXml()

Returns

XmlReadMode: The valid XML read mode used to read

the data

Parameters

Stream: A Stream object or any object that derives from

the Stream class. This parameter is more often a

reference to an XML document.

Description

This method is used to obtain a string of characters for-

matted as XML that is to be stored inside the DataSet

component.

Usage

Use this method when you wish to populate a DataSet

with an XML document or any form of XML source. To

write data to a file, you would have to use the Write-

XML() method. To obtain a full comprehensive overview

of XML integration with ADO .NET, read Chapter 5.

88 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

ReadXmlSchema()

Returns

None

Parameters

Stream: A Stream object or any object that derives from

the Stream class. This parameter is more often a

reference to an XML document.

Description

This method is used to obtain a string of characters for-

matted as the schema of an XML document that is to

become the schema of the data stored inside the DataSet

component.

Usage

Use this method when you wish to apply a particular

XML schema to a DataSet from the schema of an XML

document or any form of XML source. To obtain a full

comprehensive overview of XML integration with ADO

.NET, read Chapter 5.

RejectChanges()

Returns

None

Parameters

None

Description

This method is used to reject or roll back all the changes

that have occurred to the DataSet component since its

AcceptChanges() method was last called.

Data Manipulation 89

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

Use this method when you wish to reject all the changes

that occurred to a DataSet. This is a powerful functional-

ity that allows for undo operations and rollback facilities

on the client machine.

Reset()

Returns

None

Parameters

None

Description

This method is used to reset the DataSet to its original

state.

Usage

Use this method when you wish to perform a full rollback

of changes made to the DataSet from the time it was ini-

tialized in memory.

ToString()

Returns

None

Parameters

None

Description

This method is used to obtain the representation of the

DataSet as a string.

90 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Usage

Use this method when you wish to obtain the represen-

tation of the DataSet as a string. The string is not in any

specific format. If you want the DataSet’s data as an XML

stream, use the GetXml() method.

WriteXml()

Returns

None

Parameters

Stream: A Stream object or any object that derives from

the Stream class. This parameter is more often a

reference to an XML document.

Description

This method is used to write the content of a DataSet

component to a file as XML.

Usage

Use this method when you wish to obtain XML inside a

file from a DataSet’s content. It is important to initialize

the Stream parameter first. To obtain a full comprehen-

sive overview of XML integration with ADO .NET, read

Chapter 5, “XML Integration with ADO .NET.”

WriteXmlSchema()

Returns

None

Parameters

Stream: A Stream object or any object that derives from

the Stream class. This parameter is more often a

reference to an XML document.

Data Manipulation 91

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Description

This method is used to write the structure of a DataSet

component as XML schema to a file.

Usage

Use this method when you wish to obtain XML schema

inside a file from a DataSet’s structure. It is important to

initialize the Stream parameter first. To obtain a full com-

prehensive overview of XML integration with ADO

.NET, read Chapter 5, “XML Integration with ADO

.NET.”

DataSet.ExtendedProperties

This section of the chapter takes an in-depth look at the

ExtendedProperties property of the DataSet component.

Since this property is of type System.Data.Property-

Collection, most of what you read here will apply to any

component or object inheriting from the System.Data.

PropertyCollection class.

The ExtendedProperties property is worth discussing in

this chapter because it is equipped with properties and

methods of its own that provide you with many ways to

customize, extend, and, therefore, add power to the

generic DataSet component. To use ExtendedProperties

effectively, you need to know two basic things:

� How to add an extended property to a DataSet

� How to read and write values to the property

Adding an Extended Property

To add an extended property to a DataSet, use the Add()

method. The following example adds two extended prop-

erties to a DataSet:

92 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dim ds as New DataSet ()

'Initialize DataSet
With ds.ExtendedProperties

.Add ("username", "Terrence")

.Add ("password", "pizza")

End With

Reading and Writing Values

There are several ways to read the values of the

extended properties.

To read the value of one single extended property, use

the Item(index) property:

With ds.ExtendedProperties

MsgBox(.Item(0)) ‘Display message box showing the value of
'the username property — “Terrence”

End With

To obtain the values of all the extended properties as a

collection, use the Values property to populate an

ICollection component:

Dim propColl as ICollection

With ds.ExtendedProperties
propColl = .Values

End With

DataTableCollection

As mentioned earlier, a DataSet is a container of data. Its

data are organized inside objects of type DataTable. The

DataTableCollection property of the DataSet is simply an

optimized ICollection component that acts as a container

of DataTable objects within the DataSet.

Data Manipulation 93

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

The advantages of maintaining a collection of DataTable

objects are as follows:

� It allows the DataSet to provide a convenient way for

consumers to refer to all its content as a single

object.

� It allows consumers to sort the content of a DataSet

based on a specific member of the DataTable compo-

nents contained within the collection.

� It allows consumers to easily iterate through the con-

tent of a DataSet and perform actions.

This component is very complex and easily manageable.

A developer does not have to use this component prop-

erty directly because the operations of adding and delet-

ing DataTable objects are done entirely by the DataSet

component.

DataRelationCollection

A DataSet acts as in-memory data storage and a con-

tainer of DataTable components. For the proper manage-

ment of relationships between items of related DataTable

components that it contains, the DataSet maintains a col-

lection of DataRelation components inside another com-

ponent called DataRelationCollection. This component is

another optimized version of the generic ICollection

component.

A relationship between a DataColumn of one DataTable

to that of another DataTable allows for the association of

DataRows between the two tables. A typical relationship

would be Order and OrderItems.

The advantages of using a DataRelationCollection are:

94 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

� You are better able to navigate from one table to

another within the DataSet simply by referencing the

DataRelation’s key within the collection.

� It allows for integrity enforcement by providing you

with ways to specify UniqueKeyConstraint and

ForeignKeyConstraint component properties for each

DataRelation. Of course, this can be done on a spe-

cific DataRelation component, but it is more manage-

able when everything can be done from the same

location.

The Big Picture

Much has been said about the DataTable component

throughout this book. In this section, this component is

not dissected in detail as previously done with the

DataSet, but you are given the tools you need to work

with the DataTable.

The DataTable is the real container of data items in ADO

.NET’s client components. Think of it as a database

table. Data are stored in components called DataRows,

which are analogous to a table’s row in database terms.

The DataRow itself can have one or several Data-

Columns.

ADO .NET goes further by providing for the instrumen-

tation of different views of the data stored by a DataTable

through components called DataViews. The following

example shows you how to create a DataTable compo-

nent, assign columns to it, populate it, and create a view

for it. The view is then used as a data source for a

DataGrid on a Windows Form object. To view and per-

haps extend this code, see the Chapter03 folder on the

companion CD. The example uses the Northwind data-

base in SQL Server 2000.

Data Manipulation 95

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Public Class frmCustomers
Inherits System.Windows.Forms.Form

Private dtCustomers As New DataTable()
Private dvCustomers As DataView

#Region " Windows Form Designer generated code "

Private Sub cmdPopulateGrid_Click _
(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _
cmdPopulateGrid.Click

PopulateGrid() 'Populate the grid

End Sub

Private Function PopulateGrid()

If dtCustomers.Rows.Count < 1 Then
PrepareData() 'Prepare the datasource
'Assign the data source to the grid
With dgCustomers

.DataSource = dvCustomers
End With

Else
'If there are rows in the DataTable, there is
'no need to retrieve again
lblMsg.Text = "The grid is already populated."

End If

End Function

Private Function PrepareData()

Dim dr As DataRow
Dim objCustReader As Data.SqlClient.SqlDataReader

'Create columns in the DataTable
With dtCustomers.Columns

.Add(New DataColumn("Customer ID", _
GetType(String)))

.Add(New DataColumn("Company Name", _
GetType(String)))

96 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

.Add(New DataColumn("Contact Name", _
GetType(String)))

.Add(New DataColumn("Address", _
GetType(String)))

End With

'Populate the DataReader
objCustReader = GetData()

'Populate the DataTable
With objCustReader

While .Read()
'A new DataRow is added upon each
'iteration
dr = dtCustomers.NewRow()
dr(0) = .Item("CustomerID")
dr(1) = .Item("CompanyName")
dr(2) = .Item("ContactName")
dr(3) = .Item("Address")
dtCustomers.Rows.Add(dr)

End While
End With

'Create a view of the DataTable
dvCustomers = New DataView(dtCustomers)

'Free Resources
objCustReader = Nothing

End Function

Private Function GetData() As _
Data.SqlClient.SqlDataReader

Dim strConn As String
Dim strQuery As String
Dim objConn As New Data.SqlClient.SqlConnection()
Dim objCmd As New Data.SqlClient.SqlCommand()
Dim objReader As Data.SqlClient.SqlDataReader

'Set up the connection string for the
'SQL Server database
strConn = "Data Source=LOCALHOST;"
strConn &= "Initial Catalog=Northwind;"
strConn &= "User ID=sa;password=;"

Data Manipulation 97

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

With objConn
'Assign connection string
.ConnectionString = strConn
'Open a connection to the database
.Open()

End With

'Set up the query string
strQuery = "SELECT CustomerID, CompanyName, "
strQuery &= " ContactName, Address "
strQuery &= " FROM Customers"

'Execute the command
With objCmd

.CommandText = strQuery

.Connection = objConn
objReader = .ExecuteReader()
.Dispose()

End With

'Return the reader
Return objReader

End Function

End Class

Summary

The DataSet is the key element of data manipulation

inside client applications. It is important to keep in mind

that when performing simple tasks, such as populating a

grid like in the previous example, you need to consume

as few client resources as possible. Avoid using a com-

plex component like the DataSet in this case and simply

go for a DataTable. There are instances, of course, when

you would want to bind the grid to a DataSet because you

would want the user to edit the data and save it back to

the data source. You are now advised to read Chapter 8,

“Migrating ADO Applications,” which provides you sev-

eral scenarios of common data manipulation tasks.

98 Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 4

Designing ADO .NET
Applications

.NET Application Models

The .NET Framework supports a variety of application

architectures. In this chapter, we examine where and

how to use ADO .NET in the different application archi-

tectures of the .NET Framework. First, though, let’s

have a look at the different architectures that you can use

in .NET.

There are mainly four kinds of applications that you can

build:

� Windows Forms applications

� Console applications

� Windows Services applications

� ASP .NET web applications

Windows Forms Applications

This is the classic Windows application. The user inter-

faces are done through Windows Forms and Windows

Form Controls, which are fully object oriented. In nearly

all of the cases, these types of applications involve some

sort of data modification in the application, and the modi-

fied data is then stored in a data source. The data source

can be a database or a file, as is the case with a word

processor.

99

TEAM LinG - Live, Informative, Non-cost and Genuine!

Database client-server applications are also part of this

architecture. The application is usually installed on the

client’s machine, and connections are made directly to

the databases using ADO .NET. With Windows Forms,

you typically bind sources to a Windows Forms Control.

The control then becomes the interface through which

you view and modify the data.

Form Data Binding

Providers and consumers of data are required to allow

form data binding. It is simpler to look at Windows

Forms data binding from the provider perspective. Data

binding is versatile in that you can bind to almost any

structure that contains data. This can be an array that

implements the IList interface, a collection, or one of the

data structures from ADO .NET. In this section, I will

only concentrate on binding with ADO .NET data

structures.

Note: The IList interface represents a collection of
objects that can be individually accessed by index.

You can bind the control to the following ADO .NET data

objects:

� DataColumn object: This is the building block of a

DataTable object. It represents a column in a data-

base table. You can bind a simple control, such as a

TextBox control’s Text Property, to a column within

the data table.

� DataTable object: This represents one table of

in-memory data in ADO .NET. It can be a one-to-one

matching to a database table, or it can be a virtual

table derived from the result of a retrieve operation

on the database. It contains rows and columns that

are represented by two collections, the DataColumn

and the DataRow. You can bind a complex control,

such as a DataGrid control, to a DataTable. However,

100 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

when you bind to a DataTable, you are really binding

to the DataTable’s default DataView.

� DataView object: This object is a customized view

of a single DataTable that may be filtered or sorted.

Just like DataTable, you can bind DataView to com-

plex controls, but be aware that you are binding to a

fixed snapshot of the data rather than an updating

data source.

� DataSet object: This is a collection of tables, rela-

tionships, and constraints of the data in a database. If

you bind to a DataSet, you are actually binding to its

default DataViewManager.

� DataViewManager object: This represents a cus-

tomized view of the entire DataSet and is similar to a

DataView but with relations included.

Note: Simple controls consist mainly of controls
that display or hold one element of information.
These include controls like text boxes, radio buttons,
and check boxes. Complex controls hold a set of
elements of information and, at times, even the
relationship between the elements. These include
grid controls, list boxes, and many other OLE
controls.

A CurrencyManager object is associated with any Win-

dows Form that you bind to data source. It is the job of

the CurrencyManager object to keep track of the position

in the data source (for example, what row is current) and

manage the bindings to the data source. In addition,

every Windows Form has a BindingContext object.

There is a CurrencyManager for each discrete data

source that you bind to per BindingContext object. The

BindingContext object keeps track of all the Currency-

Manager objects on the form. So, any Windows Forms

with data-bound controls will have at least one

BindingContext object. You can also create a

Designing ADO .NET Applications 101

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

BindingContext object for a container control, such as

GroupBox, Panel, or TabControl, that contains data-

bound controls. This allows each part of your form to be

managed by its own CurrencyManager object. Figure 4-1

shows the data binding architecture of Windows Forms.

Common Scenarios for Data Binding

If you take a look at all Windows applications today, you

will find that nearly all commercial applications use infor-

mation read from data sources of one sort or another.

Most of those use some kind of data binding technology

to display and manipulate the data source. Below are a

few of the most common scenarios that use data binding

as a method of data presentation and manipulation:

� Reporting: Reports provide a flexible way to display

and summarize data in printed documents or on

screen. Common reports include lists, invoices, sum-

maries, and even cross tabs. The data is formatted to

facilitate reading rather than data entry. For example,

102 Chapter 4

Figure 4-1: Windows Forms data binding architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

you would format the date to display in long date for-

mat rather than short date format if space is

available.

� Data entry: A data entry form is a common way to

enter a large amount of related data. Users can enter

information directly or select choices using text

boxes, option buttons, drop-down lists, and check

boxes. The database is updated with the new or mod-

ified data.

� Parent/child relationship: A parent/child relation-

ship is one format for looking at related data. Typi-

cally, there are two tables of data with a relation

connecting them (for example, invoice headers and

invoice details tables). The relationship is usually

one-to-many.

� Lookup table: Another common scenario is the

table lookup. This is usually a way of finding more

details about a row of data. For example, the form

will display a list of products sold by a company, but

the actual data saved is the primary key of the prod-

ucts table. Since the primary key is just a number

and meaningless to a human operator, the name of

the item is shown instead.

Data Access Strategy for Windows Forms
Applications

There is no correct strategy for accessing data in Win-

dows Forms. Since Windows Forms are typically thick

clients and most of the resources consumed are on the

client machine, your choice would be mainly in relation

to what you expect the client machine to be able to han-

dle. There a few points you might want to keep in mind:

� DataSets: This component allows you to maintain

complex relationships and referential integrity, sim-

plifying data manipulation.

Designing ADO .NET Applications 103

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Data binding: You can bind data sources to controls

in the development environment instead of in the

code, simplifying development.

� Data commands: You cannot bind to data com-

mands, but some operations that modify database

structure can only be done through data commands.

� Stored procedures: Creating stored procedures in a

database is more efficient than using direct SQL

commands to manipulate the data because the stored

procedures are compiled.

There is no strategy that fits all situations. Keep in mind

the different points mentioned above, and develop your

own strategy according to your requirements. You will

find that you develop the right strategy as you gain more

experience.

Console Applications

Console applications are non-GUI, text-based interfaced

applications. Console applications are dated architecture

but are still used for some applications. They are very

useful when the communication line is slow and process-

ing power is limited. Console applications are widely

used for remote administration.

Data Access Strategy for Console Applications

Even though console applications do not have a GUI

interface, you might still need to access and process data.

You might build a console application that does extensive

data processing. You can build an application that carries

out data maintenance and administrative tasks such as

creating users in the database, or simply allows legacy

hardware to access your program.

The data access requirements of a console application are

no different from a Windows Forms application. Data is

104 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

accessed and processed in the same way. The only thing

you cannot do is bind the data to visual components. You

will have to write logic to display the data to the user, if

required.

Windows Services Applications

Windows Services replaces what was formerly NT Ser-

vices. A Windows Service is an application or a module

that runs on a server and provides services to other

applications and modules. A server in this context means

the provider of the service. This can include NT Work-

station and Windows 2000 Professional, which is not con-

sidered a server in the traditional sense. A service has

no other user interface. If one is required, a separate

module must be written that controls the behavior of the

service.

Data Access Strategy for Windows Services

Since there is no direct user interaction, there is no need

for data binding in a Windows Service. A Windows Ser-

vice is typically always running and might service multi-

ple users or multiple processes for the same user. This

property puts some unique requirements on Windows

Services when it comes to data access.

Since the Windows Service is always running, you might

consider not having a permanent connection to the data

source, but instead connect to the data source when it is

needed. This has the disadvantage of overhead when

connecting but frees server resources when the Win-

dows Service is idle. It is also a good idea to check if the

connection is live each time you start a data access cycle.

Another disadvantage of this strategy is that you can get

a lot of connection and disconnection cycles, which is not

very efficient.

Designing ADO .NET Applications 105

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

An improved method is to use a timeout strategy. This

means that the connection to the data source disconnects

after a set time of being idle. You can then check if a con-

nection is live and only reestablish the connection if it

has timed out.

We have so far looked at three types of application archi-

tectures, all with similar requirements. Next, we will

look at ASP .NET applications, which require more plan-

ning and careful attention when it comes to data access

strategy.

ASP .NET Web Applications

ASP .NET is not only the next version of Active Server

Pages (ASP), but it also provides a unified web develop-

ment platform for the development of enterprise-class

web applications. Although ASP .NET syntax is largely

compatible with ASP, it also provides new enhanced fea-

tures for robust and scalable web applications.

ASP .NET is a compiled, .NET-based environment; you

can author applications in any .NET-compatible web lan-

guage. For now, the languages available are C#, J#, and

VB .NET. As ASP .NET is one of the core .NET class

libraries, the entire .NET Framework is available to any

ASP .NET application, including ADO .NET. This adds

the benefits of these technologies to web development,

which includes the managed Common Language Run-

time environment, type safety, inheritance, object-ori-

ented design, and compiled (instead of interpreted)

applications.

ASP .NET makes extensive use of Web Forms and XML

Web Services. XML Web Services are used to build Busi-

ness to Business (B2B) and Business to Client (B2C)

applications. You can consider Web Forms to be the pre-

sentation tier and Web Services to be the middle tier or

business tier of a distributed application.

106 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

Web Forms

Web Forms are used to create programmable web pages

that provide the user interface for web applications. A

Web Form page presents information to the user in any

browser or client device and implements application logic

using server-side code.

Note: In this context, Web Form page means the
web page that is sent to the browser and is gener-
ated by the ASP .NET compatible web server from a
Web Form.

Previously in ASP, there was no clear separation

between code and visual components of the user inter-

face. All code and scripts were included in *.asp files. In

ASP, you can use COM to separate business logic, but

you still have to have codes that manipulate the visual

component in the same file as the component. With ASP

.NET, this has now changed. User interface programming

of Web Forms is divided into two distinct parts: the

visual component in *.aspx files and the logic in

*.aspx.vb or *.aspx.cs files.

Data Access in Web Forms

The nature of web programming itself is such that data

access in Web Forms differs in several ways from data

access in Windows Forms or in older forms technology.

You must consider issues such as state management,

separation of server and client, designing for scalability,

and so on. In addition, because you will be working with

databases, you must also understand the important

points of how to manage data in Web Forms.

There are a few fundamental principles that you need to

bear in mind when accessing data in Web Forms:

Designing ADO .NET Applications 107

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Using a disconnected model

� Reading data more often than updating it

� Minimizing server resource requirements

� Accessing data using remote processes (distributing

data access)

Disconnected Model

Web Forms are disconnected. With each request a client

makes to the server, the page is built, processed, sent to

the client, and discarded from the server memory. As a

result, the data on the server are discarded from the

server memory along with other elements of the Web

Form page.

Data you are working with are not automatically available

with each round-trip to the server. If you want to access

the data, you must reload it from the source or you must

include logic to save and restore the data as part of the

page processing. This makes it impractical to maintain

database connection. Instead, for each round-trip cycle

you need to connect, process data (read or write), and

then disconnect from the database.

Reading and Updating

The Web Forms model presumes that most data

accessed by pages are read-only. This means that there

are more read operations than write operations being

performed on the data source. As a result, the Web

Forms data binding architecture is one-way. The data

binding only displays data in controls but does not write

from controls to the data source.

The one-way architecture makes the page more efficient

as it removes the bigger overhead that updating requires.

If you have a page that requires updating the data source,

108 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

you must explicitly write code to perform the update

operations yourself.

Minimizing Server Resource Requirements

Since the Web Forms pages are processed on the server

before they are sent to the browser, any data access adds

additional load to the server resources, both in terms of

processing time and memory usage.

If you choose to keep the data on the server between

round-trips (e.g., using session state variables to store

the data), you use server resources even when the page

is not being processed. This might work when you have

a small set of users, but it will not allow your application

to be scalable to a larger user set.

Tip: When designing Web Form applications, con-
sider the following:

• Be conservative with data retrieval. Only retrieve what

you need and no more.

• Use client-side state management to store data if

possible.

Accessing Data Remotely

Web Forms are the presentation tier of your web applica-

tion. Although you can include data access in your page,

in a distributed architecture paradigm it is common to

separate data access logic and business logic from the

user interface logic. This can be achieved by building an

XML Web Service that contains the data access logic.

Data to XML Web Services

An XML Web Service is a programmable entity that pro-

vides a particular set of services or functionality, such as

application logic or data access control. It is accessible to

any number of systems using ubiquitous Internet stan-

dards, such as XML and HTTP. The methods of

Designing ADO .NET Applications 109

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

communication used by XML Web Services are XML-

based messaging. This helps bridge the difference that

exists between systems that use incongruent component

models, operating systems, and programming languages.

As it is designed to work in the heterogeneity of the web

environment, XML Web Services must have the follow-

ing properties:

� They must be loosely coupled: Loosely coupled

systems have only the requirement of understanding

self-describing, text-based messages to be able to

communicate between each other.

� They must use ubiquitous communication: The

Internet communication capability is now a standard

requirement for new operating systems, at least in

the near future, thus providing an omnipresent com-

munication channel. The ability to connect almost

any system or device to the Internet will ensure such

systems and devices are universally available to any

other system or device connected to the Internet.

� They must use universal data format: Any sys-

tem supporting the same widely accepted open

standards is capable of understanding XML Web

Services. By using XML, communication between

autonomous and disparate systems is now a

possibility.

The DataSet was engineered in such a way to provide

convenient transport of data over the Internet. The

DataSet and DataTable can be specified as an input or an

output of XML Web Services without any additional

coding required to stream the contents of the DataSet

between the XML Web Services and the client. The

DataSet is implicitly converted to an XML stream on the

sending end, sent over the network, and reconstructed

from the XML stream to a DataSet on the receiving end.

110 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

This provides a simple way for XML Web Services to

exchange data with its clients. Figure 4-2 shows the

XML Web Services communication cycle.

Note: The DataSet is converted to an XML stream
using the DiffGram format. A DiffGram is an XML
format that is used to identify current and original
versions of data elements. The DataSet uses the
DiffGram format to load and persist its contents and
to serialize its contents for transport across a net-
work connection. When a DataSet is written as a
DiffGram, it populates the DiffGram with all the
necessary information to accurately recreate the
contents, though not the schema, of the DataSet,
including column values from both the original and
current row versions, row error information, and
row order.

The DataSet was architected with a disconnected design,

in part to facilitate the convenient transport of data over

the Internet. The DataSet and DataTable are “serialize-

able” in that they can be specified as an input to or out-

put from XML Web Services without any additional

coding required to stream the contents of the DataSet

Designing ADO .NET Applications 111

P
a
rt

II

Figure 4-2: XML Web Service communication cycle

TEAM LinG - Live, Informative, Non-cost and Genuine!

from an XML Web Service to a client and back. The

DataSet is implicitly converted to an XML stream using

the DiffGram format, sent over the network, and recon-

structed from the XML stream as a DataSet on the

receiving end. This gives you a very simple and flexible

method for transmitting and returning relational data

using XML Web Services.

The code sample below shows a simple use of the

DataSet in an XML Web Service.

The first thing you need to do is create the XML Web

Service. We will first create a Class called Service1 that

will manipulate employee data in the Northwind data-

base. Once you have generated a template for your ser-

vices, you will add the following code to the top of the

Service1.asmx.vb file:

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Web.Services

<WebService(Namespace:="http://localhost/CHO7- _
Sample-01")> Public Class Service1
Inherits System.Web.Services.WebService

You will place the rest of the code after the Web Services

designer generated code, still in Service1.asmx.vb file:

'WEB SERVICE SAMPLE

'Create SQL Connection to database
Public nwindConn As SqlConnection =
New SqlConnection ("Data Source=localhost; _
Integrated Security=SSPI;
Initial Catalog=northwind")

'Describe public function for getting employee data
<WebMethod(Description:="Returns Northwind
employee", EnableSession:=False)> _
Public Function GetEmployee() As DataSet

112 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Declare and initialize SQL DataAdapter
Dim employeeDA As SqlDataAdapter =
New SqlDataAdapter ("SELECT EmployeeID,
LastName, FirstName, Title FROM Employees",
nwindConn)

'Declare and initialize DataSet
Dim employeeDS As DataSet = New DataSet()

'Determine action to take if column name does not
'match
employeeDA.MissingSchemaAction = _
MissingSchemaAction.AddWithKey

employeeDA.Fill(employeeDS, "Employees")

GetEmployee = employeeDS

End Function

'Public function for modifying Employee table
<WebMethod(Description:="Updates Northwind
Customers", EnableSession:=False)>
Public Function UpdateEmployee(ByVal employeeDS As
DataSet) As DataSet

'Create SQL DataAdapter
Dim employeeDA As SqlDataAdapter = New
SqlDataAdapter()

'Define the insert command
employeeDA.InsertCommand = New SqlCommand
("INSERT INTO Employees (EmployeeID, LastName,
FirstName)" & "Values(@EmployeeID, @LastName,
@FirstName)", nwindConn)

employeeDA.InsertCommand.Parameters.Add _
("@EmployeeID", SqlDbType.NChar, 5, "EmployeeID")

employeeDA.InsertCommand.Parameters.Add _
("@LastName", SqlDbType.NChar, 15, "LastName")

employeeDA.InsertCommand.Parameters.Add _
("@FirstName", SqlDbType.NChar, 15, "FirstName")

'Define the update command

Designing ADO .NET Applications 113

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

employeeDA.UpdateCommand = New SqlCommand _
("UPDATE Employees Set LastName = @LastName, " & _
"FirstName = @FirstName WHERE EmployeeID = _
@EmployeeID", nwindConn)

employeeDA.UpdateCommand.Parameters.Add _
("@LastName", SqlDbType.NChar, 15, "LastName")

employeeDA.UpdateCommand.Parameters.Add _
("@FirstName", SqlDbType.NChar, 15, "FirstName")

'Define the where clause parameter as that of
'the original employee ID
Dim myParm As SqlParameter = _
employeeDA.UpdateCommand.Parameters.Add _
("@EmployeeID", SqlDbType.NChar, 5, "EmployeeID")

myParm.SourceVersion = DataRowVersion.Original

'Define the Delete command
employeeDA.DeleteCommand = New SqlCommand _
("DELETE FROM Employees WHERE EmployeeID = _
@EmployeeID", nwindConn)

'Define the where clause parameter as that
'of the original employee ID
myParm = employeeDA.DeleteCommand.Parameters.Add _
("@EmployeeID", SqlDbType.NChar, 5, "EmployeeID")

myParm.SourceVersion = DataRowVersion.Original

employeeDA.Update(employeeDS, "Employees")

UpdateEmployee = employeeDS

End Function

End Class

After you have created the XML Web Service, you can

test it by running the debugger in Visual Studio .NET.

This should open a web page with the hyperlinks for the

two methods you have just created: GetEmployee and

UpdateEmployee. If you click on GetEmployee, a new

114 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

web page opens containing a button called Invoke. If you

click on Invoke, you get the XML result of running the

GetEmployee method. There is no such button for the

UpdateEmployee method. This is because it requires

parameters, and to test it, you will need to define debug

data for the method.

Once you have created the required web reference in

your client application, you can access the methods as if

it were any other local object. In the listing below, a web

reference has been defined to the XML Web Service we

created above; it is called ServiceSample.

'Define Object from XML WebService
Dim ServiceClient As New ServiceSample.Service1()

'Get the DataSet using the GetEmployee method
Dim myDS As DataSet = ServiceClient.GetEmployee

'Get table
Dim myTable As DataTable = myDS.Tables("Employee")

As you can see, once you have created the web refer-

ence, it is a simple matter of creating an object based on

the class in the XML Web Service. Communication and

getting results from methods of the object are handled

transparently, just as if the object were local.

Data Access Strategy for ASP .NET
Applications

When you design your web applications, you will need to

decide what data access strategy you wish to adopt.

There is no right strategy; each one has its own advan-

tages and disadvantages that you must first consider. You

will have to make a choice as to which strategy you

adopt, depending on your particular requirements.

DataSets or Data Commands?

One of the first choices you need to make is whether to

cache data in DataSets or access the database directly

Designing ADO .NET Applications 115

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

reading rows through a data reader. For some database

operations, that results in modification of the database

structure (for example, creating new tables—you cannot

use DataSets, but you have to execute a data command

instead). For most common data access scenarios, how-

ever, you have a choice between storing records in dis-

connected DataSets and accessing the records directly

using data commands.

Each strategy has inherent advantages that apply to any

data access scenarios and not just for web applications.

Using DataSets makes it easier to work with related

tables and data from disparate sources. On the other

hand, using a data reader eliminates the extra steps of

filling a DataSet. This often results in slightly better per-

formance and memory usage. You also have more direct

control over the statements and stored procedures you

use.

DataSets and Data Commands in Web Forms
Pages

When using Web Forms, additional factors come into play

when choosing your data access strategy. One main fac-

tor is the Web Form life cycle; Web Forms are initialized,

processed, sent to the client, and discarded with each

round-trip to the server. If you just want to display data,

using a DataSet is inefficient and requires unnecessary

overhead since that DataSet will immediately be

discarded.

In general, you can assume that using data commands is

better when working with Web Forms pages. However,

there are exceptions:

� Working with related tables: With DataSets, you

can maintain multiple related tables, including sup-

port for relations and referential integrity. When you

work with related records, such as parent and child

relationships, it can be much simpler to use a

116 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

DataSet rather than fetching the records independ-

ently using data commands.

� Exchanging data with other processes: If you

exchange data with other components, such as XML

Web Services, you will almost always use a DataSet

to hold a local copy of the data. As discussed earlier,

DataSets automatically read and write the XML

stream used to communicate between components in

the .NET Framework.

� Working with a static set of records: If you use

the same set of records repeatedly, such as paging in

a grid, it is more efficient to place those records into

a DataSet rather than retrieving the data from the

database with each round-trip.

Tip: Remember to always retrieve, whenever
practical, only the records and columns that you
need and no more. This will reduce load on server
resources and make your application more scalable.

Cache or Recreate?

If you choose to use DataSets, your next choice is to

decide whether to recreate the DataSet with each

round-trip or create it once and save it in such a way that

it can be accessed in a subsequent round-trip.

If you choose to recreate the DataSet with each round-

trip, you have to run a query against the database each

time a user clicks a button on your page. The advantage

is there is less chance of the data being out of sync, but

there is the added overhead of connecting to the database

each time.

If you save and restore the DataSet with each round-trip,

you reduce the overhead of connecting to the server but

increase the load on server resources. If the recordset is

large, and you have a lot of users, you can quickly run out

Designing ADO .NET Applications 117

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

of server resources (namely, memory). You can, however,

store the DataSet on the client, as I will discuss in the

next section. There is also a bigger chance of the data

being out of sync since you are not refreshing the data

with each round-trip.

Do You Store the DataSet on the Server or Client?

If you choose DataSets, the final decision is where to

store the DataSet. You can store it on the server as a ses-

sion variable or application variable, or you can store it in

the client page in a hidden field. If you store it on the

server, you will of course use server resources. This

makes the application less scalable. Conversely, if you

store the DataSet in the page, it will be passed as part of

the HTML stream to the client. If the DataSet is large,

the communication speed between server and client can

be adversely affected.

No matter which strategy you choose, you will have to

write the logic yourself for storing the DataSet on Web

Forms. DataSets are stored as type Object in session

variables, and you must cast it back as DataSet. See the

following example:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load

' Check to see if the page is loaded again
If Page.IsPostBack Then

' Cast object as dsEmployees from session
' and assign to variable
dsEmployeeLD = CType(Session("myDsEmployees"), _
dsEmployees)

Else
' If this is first time page is loaded check
' session variable
If Session("myDsEmployees ") Is Nothing Then

' Variable does not exist, create it
' and set its value
OleDbDataAdapter1.Fill(dsEmployeeLD)
Session("myDsEmployees ") = dsEmployeeLD

118 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

End If
End If

End Sub

Concurrency Issues

In a multiuser and distributed environment, there is

often the risk that two users will update the same

records or the records will be out of sync. This is com-

mon to a concurrent system. There are two strategies

that can be adopted to overcome concurrency issues:

pessimistic concurrency and optimistic concurrency.

Pessimistic concurrency involves locking rows of records

while the user is working on them. It means that no

other user can update the records while one user is

working on them. This strategy is primarily used in an

environment where there is heavy contention for data. It

is not really appropriate for web applications since the

connection to each client is not maintained with each

round-trip. Once a connection closes, all locks that it

holds are automatically released.

Optimistic concurrency does not lock rows. Instead, it

checks if the row has changed since it was last read

before applying any update. If it has not been changed,

the update can proceed as normal; otherwise, the user is

informed about the change and given a choice to

re-retrieve the data and discard changes or overwrite the

changed record. The DataSet object is designed to

encourage the use of optimistic concurrency for long-

running processes, such as those found in distributed

applications and web applications.

A common method to determine if the records have

changed is to check each field against what was originally

retrieved. This, though more accurate, will add additional

overhead since the number of fields you have to compare

can be potentially large. The more practical method is to

design optimistic concurrency checking within your

Designing ADO .NET Applications 119

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

database and application. This can be done by having a

date and time field with every updateable table. Each

time the table is modified, the current date and time is

set in the table. This can be achieved through database

triggers or done by the application itself. You will then

only have to check the date and time field to know if the

record has changed since you last retrieved it.

Data, Data Everywhere

We have so far examined all the different application

models available in .NET, different strategies you can fol-

low when manipulating data, and what the different impli-

cations are. As you have seen, there is not always a

clear-cut solution or correct strategy. You will have to

weigh the advantages and disadvantages of each one

before you can choose which strategy is appropriate for

your application.

Spec My Components

Previously in this chapter, you learned about the differ-

ent application architectures and how ADO .NET is inte-

grated in each one. We covered ASP .NET in more detail

because its architecture is substantially different for clas-

sical applications. ASP .NET is based more on distrib-

uted application architecture. Distributed application has

at least three main layers, or tiers: the presentation tier,

the business tier, and the data tier. Components in any of

the tiers, especially the business and data tiers, are

designed to be independent and can be used as building

blocks to different applications. In the following sections

we will look at data components, which are found in the

data tier.

120 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

What is a Component in .NET?

Generally in programming, “component” is used to refer

to self-contained, compiled pieces of code that are reus-

able and can interact with other codes and objects. Previ-

ously, components were implemented through the COM

model or derivatives, such as COM+ and DCOM. In the

.NET Framework, a component is simply a class that

implements the System.ComponentModel.IComponent

interface or is inherited directly or indirectly from a class

that implements IComponent. A .NET Framework com-

ponent also provides additional features, such as control

over external resources and design-time support.

Components are hosted or sited within a container.

� Container: This is a class that implements the Sys-

tem.ComponentModel.IContainer interface or is

inherited from a class that does. The IContainer

interface must support methods for adding, remov-

ing, and retrieving components. A container contains

one or more components that are referred to as the

container’s child components.

� Site: This is a class that implements the Sys-

tem.ComponentModel.ISite interface or is inherited

from a class that does. Sites are provided by a con-

tainer as a way to manage and communicate with

their child components. Typically, a container and a

site are implemented as one unit.

When to Build Data Components

When you develop an application that shares data, you

should consider merging that data into a single compo-

nent. If you store your data via data components, you

provide a standard way for other components to access

the data. For example, if you have a stock entry compo-

nent, it can be used by both an inventory management

component and an order processing component. You first

Designing ADO .NET Applications 121

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

have to determine the component’s functionality, and

only then will you be prepared to refine the component

design and implementation.

Component Design Guidelines

When you design your component, your first decision is

which tier the component will fall into. This is important,

but it is not always easy to separate the logic. It takes

some experience to correctly do the separation, and it

will affect how you design the component. In this book,

we are more interested in the data tier, so I will concen-

trate on design guidelines for data components, espe-

cially from the point of view of ASP .NET applications.

All your component design decisions are interrelated.

Your component function will affect how it is used in your

applications and will, in turn, affect what kind of models

you will use.

Component Scope

When you create an instance of a component in your ASP

.NET application, you must decide what its scope will be.

You have three scopes available to you:

� Page: Most business rule components are placed at

the page scope. The object created on the page scope

is available on the page. It is created with each

round-trip and destroyed each time.

� Session: If the component functionality spans multi-

ple pages, it should be at the session scope. Session

scope objects are created for each session a user has

with the server. The object is only destroyed when

the user disconnects from the server. This is the

usual scope for data components. Be aware that ses-

sion variables consume resources on the server, and

this can have some issues with scalability.

122 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Application: This scope is usually reserved for

application-wide components, such as a page counter

component. Variables and objects at application level

are available to all users and sessions.

The scope of your component will determine which

methods you choose to implement in your component

and how you store state variables. If you have a compo-

nent that is scoped for page, there is no need to store

data in variables so that the successive page accesses

them. Remember, the component is destroyed in each

round-trip. Instead, you would have to store the data in

the data source directly and recreate them in each

round-trip or each time the component is constructed.

Component Implementation

Implementing components in .NET is as simple as imple-

menting any other kind of class with a few rules that you

must follow so that the class is considered to be a compo-

nent, a container, or a site, as we discussed previously.

There are also a few guidelines that you are advised to

follow so that your component is efficient, maintainable,

and scalable. We will discuss issues specific to the imple-

mentation of components next.

Properties vs. Public Fields

In a class, you can give the developer access to member

fields by either making the fields public or providing

methods that modify those fields. To maintain the rule of

encapsulation, you should avoid the use of public fields in

all your classes. In components, methods that modify

fields have a special syntax and are called properties.

Visual designers, such as Visual Studio .NET, display

properties but do not display public fields. Therefore, it is

better for a component to define properties instead of

public fields. Public fields work against the principle of

encapsulation in the object-oriented paradigm, whereas

Designing ADO .NET Applications 123

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

properties embrace encapsulation. Properties act like

intelligent fields and normally have a private data mem-

ber combined with modifier and accessor functions. It is

then accessed syntactically as a field of a class.

A property definition generally consists of the following

two pieces: a private or protected data field and a public

or protected property.

Public Class APropertyExample

' The data field.
Private amount As Integer = 0

Public Property propAmount As Integer
' Retrieves amount.
Get
Return amount

End Get

' Assigns to amount.
Set
amount = value

End Set
End Property

'Other members...
End Class

' Example of how to use the property
Public Class UseAPropertyExample
Public Shared Sub Main()

' The data field.
Dim example As New APropertyExample()

' Sets the property.
example. propAmount = 5

' Gets the property.
Dim anumber As Integer = example.propAmount

124 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

End Sub

End Class

As you can see in the code snippet above, the property is

further divided into two parts: the data accessor (or Get

function) and the data modifier (or Set function).

Learning to Run

Once you have built your application, you usually find

that you need to optimize it so it can scale better and

perform as well as it did in the production environment.

In the following sections, you will learn a few additional

techniques for improving data access.

Connection Pooling

Pooling is a way to share data connections in applications

without the need and overhead of establishing a connec-

tion each time. Pooling connections can significantly

enhance the performance and scalability of your applica-

tions. Most database vendors provide ways to manipulate

or create connection pools. I will concentrate mainly on

the data provider available with .NET, specifically the

SQL Server .NET Data Provider. The SQL Server .NET

Data Provider provides connection pooling automatically

for ADO .NET client applications that connect to any

SQL Server database. You can also supply several con-

nection string modifiers to control connection pooling

behavior.

When you open a connection, a connection pool is auto-

matically created based on an exact string matching algo-

rithm that associates the pool with the connection string

in the connection. Each connection pool is associated

with a distinct connection string. This means that if you

already have a connection with the same connection

Designing ADO .NET Applications 125

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

string as you have just specified, that connection will be

used instead of having to create a new one. If an exact

match to an existing pool is not found, a new connection

is created and added to the pool.

In the code snippet below, three new SqlConnection

objects are created, but only two connection pools are

required to manage them.

SqlConnection conn = new SqlConnection()
conn.ConnectionString = _
"Integrated Security=SSPI;Initial Catalog=northwind"

connA.Open()
' Pool A is created.

SqlConnection conn = new SqlConnection()
conn.ConnectionString = _
"Integrated Security=SSPI;Initial Catalog=pubs"

conn.Open()
' Pool B is created because the connection strings differ.

SqlConnection conn = new SqlConnection();
conn.ConnectionString = _
"Integrated Security=SSPI;Initial Catalog=northwind"

conn.Open()
' The connection string matches pool A
' so A is used instead of creating a new one.

Once created, connection pools are not destroyed until

the active process ends. Maintenance of inactive or

empty pools involves minimal system overhead.

When a pool is created, multiple connection objects are

created and added to the pool. The number of connec-

tions created are based on the minimum pool size

requirements. Connections are then added to the pool as

and when required and up to the maximum pool size.

Minimum and maximum pool size are specified as part of

the connection string.

When an SqlConnection object is requested, it is

obtained from the pool if a usable connection is available.

To be usable, the connection must currently be unused,

126 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

have a matching transaction context or not be associated

with any transaction context, and have a valid link to the

server.

When the maximum pool size is reached and no usable

connection is available, any additional request is queued

until a connection does become available or the timeout

period is over, in which case an error occurs.

Warning: Connections that are not explicitly
closed are not added or returned to the pool. You
must always close the connection yourself when you
are finished using it. This can be done by using
either the Close or Dispose method.

Stored Procedure or SQL Statement?

Stored procedures are generally faster than their SQL

statement equivalents. The main reason is that stored

procedures are compiled and an execution plan is worked

out at design time. On the other hand, SQL statements

have to be interpreted by the database engine, and the

execution plan has to be worked out at run time, which

adds additional overhead. Generally, you should try to

manipulate the database through stored procedures

instead of SQL statements.

Which Data Type?

When designing your database, one of the most impor-

tant considerations is the use of data types. Data types

are not all created equal, even if they are sometimes

interchangeable. For example, if you create a varchar(10)

data type, you could also create a char(10) data type

instead. However, varchar data types, though more effi-

cient in storage, have added overhead for maintenance. If

all the data is going to be ten characters long, char(10) is

more efficient; on the other hand, if the data varies in

length, varchar(10) is more efficient.

Designing ADO .NET Applications 127

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

The idea here is for you to be familiar with the data type

available in your database and choose wisely according to

your needs and future anticipated needs.

Data Warehousing

Data warehousing is a huge topic in itself, but it is men-

tioned here as a way to optimize your online transaction

processing (OLTP) database. As time goes by, most

OLTP databases accumulate historical data that are not

required for the day-to-day running of the system but are

kept because they are required for statistical analysis.

When you use data warehousing, you regularly clean the

system, keeping it small and optimal while you maintain

the data required for analysis in a data warehouse. The

data warehouse can then be used as a source for an

online analytical processing (OLAP) system, which is

more appropriate for larger volume statistical analysis.

Tuning and Monitoring

Once the system goes live, it is imperative that you con-

tinually monitor and tune the application to match your

needs. Initially, that might involve redesigning certain

parts of the system, but as the system stabilizes, these

issues can be solved by tuning the environment itself,

such as the server or network, or even getting more

powerful hardware. Your aim should be to identify bottle-

necks and make the system causing these bottlenecks as

efficient as possible.

To help with monitoring and identifying bottlenecks,

many servers (Windows 2000, MS SQL 2000, and

Internet Information Services) include performance

counters and monitors that you can use. Some, like MS

SQL Server, even include a self-tuning option. Study the

different performance counters that are available on your

system and make good use of them.

128 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

Protecting the Application

Since applications are becoming more distributed and the

use of the Internet has exploded, it is apparent that secu-

rity even to the level of data access is paramount and can

no longer be taken for granted. In the remainder of this

chapter, we will look at some security issues relating to

data access.

Passwords, Users, and Access Rights

To access a database, especially if you are designing a

component or XML Web Service, you will need to have

an account that the service can access. This is because

the service is more or less public. Clients to the service

will have no idea which user name or password they

should use, and you should not try to set one for each cli-

ent, especially considering that the potential number of

clients can be huge. You will have to set one account that

the service can use to access data on the database.

Warning: To protect your database, you must
never use a hard-coded password. With the .NET
Framework, there are management tools such as
ILDASM.EXE, which parses .NET Framework EXEs
and DLLs and shows readable information about the
files. If you have a hard-coded password, it will be
exposed.

The security mechanism in .NET has been enhanced

from previous versions of Windows. The classic object-

based security (files, services) still exists, but now there

is also code-based and evidence-based security. That

means that a piece of code can be given security profiles

defining which action it is allowed to perform. An admin-

istrator can also gather evidence to identify who and

where a piece of code comes from. When designing your

application, you will have to keep this in mind.

Designing ADO .NET Applications 129

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Application Information

Currently on the Windows platform, most application

information resides in the Windows registry. The .NET

Framework was designed for the web and, as such,

should be as platform independent as possible. The best

practice in .NET suggests that application information

reside in regular files instead of the registry.

Summary

In this chapter you learned about the different kinds of

application models available in .NET and how ADO .NET

fits into each. You learned about the difference between

classic Windows applications, web applications, and XML

Web Services. You also learned about the different strate-

gies that you can use in each model to manipulate data.

There is no hard-and-fast rule as to which strategy is

better. Each has advantages and disadvantages, and it all

comes down to your experience to choose the best one

for the job at hand.

130 Chapter 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 5

XML Integration
with ADO .NET

XML in .NET Frameworks

XML stands for Extensible Markup Language and was

developed by the World Wide Web Consortium (W3C).

XML was designed mainly to overcome the limitation of

HTML. Microsoft has embraced XML, and it plays a

major part in the .NET Framework.

In the previous chapter, we saw how XML is transpar-

ently used for communication between XML Web Ser-

vices. In this chapter, we will learn more about how XML

fits in the .NET Framework in general, and we will go in

more detail about the integration of XML in ADO .NET.

Architectural Overview and Design Goals

XML integration in .NET Framework was designed to

meet certain goals:

� Compliance with the W3C standards

� Extensibility

� Pluggable architecture

� Performance

� Tight integration with ADO .NET

131

TEAM LinG - Live, Informative, Non-cost and Genuine!

Standards Compliance

.NET fully conforms to the W3C recommended stan-

dards of XML, Namespaces, XSLT, XPath, Schema, and

the Document Object Model (DOM). Compliance is

essential to ensure interoperability across platforms.

� XSLT: Extensible Stylesheet Language (XSL) Trans-

formation is used to transform the content of a

source XML document into a presentation that is tai-

lored specifically to a particular user, media, or client.

� XPath: XPath is a query language used for address-

ing parts of an XML document.

.NET Framework contains sets of XML classes that sup-

port the W3C XML Schema Definition (XSD) language

1.0 recommendation.

Extensibility

Extensibility is achieved through the use of abstract base

classes and virtual methods. This extensibility is also

referred to as subclassing and is illustrated by the

XmlReader, XmlWriter, and XPathNavigator abstract

classes. These classes enable new implementations to be

developed over different data sources and stores, expos-

ing them as XML. The existing data source and stores

can include any file systems, registries, flat file legacy

databases, and relational databases. The new implemen-

tations not only display the data as XML but also provide

XPath query support for those stores.

Pluggable Architecture

XML in the .NET Framework is a stream-based architec-

ture. Pluggable in this architecture means that compo-

nents that are based on abstract .NET XML classes can

easily be substituted. It also means that if you have data

streaming between the components, new components

132 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

inserted or plugged into the stream can alter the pro-

cessing. For example, you can plug components together

using different data stores, such as an XPathDocument

and XmlDocument in the transformation process. You

could plug an implementation of your own XmlReader or

XmlWriter for processing the output, allowing the trans-

formation process to and from virtually any data source.

To allow the processing of a new data source, simply

implement your own XmlReader or XmlWriter for that

data source and plug it in.

Performance

XML classes in .NET Framework represent low-level

processing components and are required to have high

performance. They are designed to support a stream-

ing-based architecture. For improved performance, they

have the following characteristics:

� Minimal caching for forward-only, pull model parsing

with the XmlReader

� Forward-only validation with the XmlValidating-

Reader

� Cursor style navigation of the XPathNavigator, which

minimizes node creation to a single virtual node, yet

provides random access to the document. It does not

require a complete node tree to be built in memory

like the DOM.

� Incremental streaming output from the XslTransform

class

Tight Integration with ADO .NET

In the .NET Framework, relational data and XML are

coupled through tight integration between the XML

classes and ADO .NET. The DataSet component in ADO

.NET has the ability to read and write XML using

XmlReader and XmlWriter classes, including the ability

XML Integration with ADO .NET 133

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

to persist its relational schema as XML Schemas and

construe the schema structure from an XML document.

DataSet and XmlDataDocument can be synchronized so

that changes in one can be reflected in the other. We will

learn more about XML integration with ADO .NET later

in this chapter.

DOM: The XML Document Object Model

The Document Object Model (DOM) class is simply an

in-memory representation of an XML document, which

allows you to programmatically read, manipulate, and

modify XML documents. In .NET, the DOM is presented

by the XmlDocument object. Editing is the primary func-

tion of the DOM. It is the structured way that XML data

is represented in memory, even though the actual XML

data is stored in a linear fashion when in a file or in an

XML stream from another object.

The DOM is represented as a tree. The basic element of

the DOM tree is a node, which is represented in .NET by

an XmlNode object. Consider the following XML data.

<?xml version="1.0"?>
<products>

<product>
<productname>Smelly Cheese</productname >
<price format="dollar">100.99</price>
<expirydate>01/01/2009</expirydate>

</product>

<supplierinfo>
<supplier>Good Cheese Express</supplier>
<state>WA</state>

</supplierinfo>

</products>

134 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

The illustration below shows the DOM tree for the XML

data:

In the illustration, each circle represents a node. Node

objects have set methods and properties, as well as some

basic characteristics:

� Nodes have a single parent and most can have multi-

ple child nodes.

� There are different types of nodes that can have mul-

tiple child nodes:

� Document

� DocumentFragment

� EntityReference

� Element

� Attribute

� There are a few types of nodes that cannot have child

nodes:

XML Integration with ADO .NET 135

P
a
rt

II

Figure 5-1: The DOM tree

TEAM LinG - Live, Informative, Non-cost and Genuine!

� XmlDeclaration

� Notation

� Entity

� CDATASection

� Text

� Comment

� ProcessingInstruction

� DocumentType

� Attribute is one special node that does not have sib-

lings, parent, or child.

Note: Attributes, although defined as nodes by
the WC3 standards, are better considered a prop-
erty of an element node. Attributes are made up of
a name and value pair (for example, format=
"dollar").

Nodes on the same level in the DOM tree are siblings,

such as with the product node and the supplierinfo node

in Figure 5-1.

The XmlDocument class extends the XmlNode and sup-

ports methods for performing operations on the docu-

ment as a whole, such as, loading into memory or saving

the XML to a file. In addition, XmlDocument provides a

means to view and manipulate the nodes in the entire

XML document.

Note: For optimization purposes, if you do not
require the structure or editing capabilities provided
by the XmlDocument class, the XmlReader and
XmlWriter classes provide non-cached, forward-only
stream access to XML.

136 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

Nodes in .NET

Since a node is the basic structure for the DOM, let’s

look at the different node types that .NET supports in

more detail.

W3C DOM
Node Type

.NET Class Description

Document XmlDocument The container of all the
nodes in the tree. It is also
known as the document
root, which is not always the
same as the root element.

Document-
Fragment

XmlDocument-
Fragment

A temporary bag containing
one or more nodes without
any tree structure

DocumentType XmlDocumentType Represents the
<!DOCTYPE…> node

EntityReference XmlEntityReference Represents the
non-expanded entity
reference text

Element XmlElement Represents an element node

Attr XmlAttribute An attribute of an element
accessed using the
GetAttribute method of an
XmlElement

Processing-
Instruction

XmlProcessing-
Instruction

A processing instruction
node

Comment XmlComment A comment node

Text XmlText Text belonging to an
element or attribute

CDATASection XmlCDataSection Represents CDATA

Entity XmlEntity Represents the
<!ENTITY…> declarations
in an XML document, either
from an internal document
type definition (DTD) subset
or from external DTDs and
parameter entities

Notation XmlNotation Represents a notation
declared in the DTD

XML Integration with ADO .NET 137

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

W3C DOM
Node Type

.NET Class Description

Not in W3C
specification

XmlDeclaration Represents the declaration
node <?xml
version="1.0"…>

Not in W3C
specification

XmlSignificant-
Whitespace

Represents significant white
space, which is white space
in mixed content

Not in W3C
specification

XmlWhitespace Represents the white space
in the content of an element

Not in W3C
specification

EndElement (not a
class)

Returned when XmlReader
gets to the end of an
element (for example, XML:
</item>)

Not in W3C
specification

EndEntity (not a
class)

Returned when XmlReader
gets to the end of the entity
replacement as a result of a
call to ResolveEntity

Loading XML Documents in the DOM

XML information is read into memory from different for-

mats or sources. These can be a stream, URL, text

reader, XmlReader object, or derived class of the reader.

The Load method loads the document into memory. It is

an overloaded method that can take data from each of the

different formats. There is also a LoadXml method that

reads XML from a string, which is the method we will be

using in the following example.

Imports System
Imports System.IO
Imports System.Xml

Public Class Sample

Public Shared Sub Main()
'Create the XmlDocument.
Dim doc As New XmlDocument()
Dim XmlString As String

138 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Define the XmlString
XmlString = _

"<?xml version=""1.0""?>" & _
"<products>" & _
"<product>" & _
"<productname>Smelly Cheese</productname>" & _
"<price format=""dollar"">100.99</price>" & _
"<expirydate>01/01/2009</expirydate>" & _
"</product>" & _
"<supplierinfo>" & _
"<supplier>Good Cheese Express</supplier>" & _
"<state>WA</state>" & _
"</supplierinfo>" & _
"</products>"

'Load the DOM
doc.LoadXml(XmlString)

'Save the document to a file.
doc.Save("Smelly Cheese data.xml")

End Sub 'Main

End Class Sample

The above example does not do much; it just creates the

DOM for a string and saves it to a file. Notice that you

need the System.Xml namespace to be able to use XML

classes and System.IO to save the file.

Validating XML Documents

Schemas are used to validate XML documents to make

sure that they are well-formed and follow certain

required rules. XML documents can be validated using a

document type declaration (DTD) file or an XML

Schema.

XML Integration with ADO .NET 139

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

DTD: The XML Document Type Declaration

The document type declaration is used to validate XML

documents. It is the original schema definition language

for XML. DTDs have their own syntax and rules, which

are different from XML. In XML documents, the

<!DOCTYPE> statement is used to link the document

to a DTD. DTDs are somewhat limited when compared

to the more flexible XML Schema.

In .NET, the XmlValidatingReader class is used to vali-

date an XML document against an inline DTD section or

an external DTD file. To perform validation against a

document type definition, XmlValidatingReader uses the

DTD defined in the DOCTYPE declaration of an XML

document. The DOCTYPE declaration can either point

to an inline DTD or be a reference to an external DTD

file.

SOM: The XML Schema Object Model

The Schema Object Model (SOM) classes provide an

in-memory representation of an XML Schema, which

allows you to create and validate XML documents. XML

Schemas are similar to data modeling in a relational data-

base in that they provide a way to define the structure of

XML documents. This is achieved by specifying the ele-

ments that can be used in the documents, including the

structure and types that these elements must follow. The

schema itself is an XML file, typically with an .xsd file

extension. XML Schemas provide some advantages over

document type definitions:

� Additional data types

� Ability to create custom data types

� Schema uses XML syntax

� Schema supports object-oriented concepts like poly-

morphism and inheritance

140 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

In .NET, SOM facilities are provided by a set of classes in

the System.XML.Schema namespace.

The World Wide Web Consortium (W3C) schema recom-

mendation specifies the data types that can be used in

XML Schemas. In .NET, these data types are repre-

sented as XmlSchemaDatatype objects. An XmlSchema-

Datatype object contains the ValueType property, which

holds the name of the type, as specified in the W3C XML

1.0 recommendation, and the TokenizedType property,

which holds the name of the equivalent .NET data type.

The table below shows the equivalent .NET data type for

each XML Schema data type:

XML Schema Data
Type

.NET Framework Data Type

anyURI System.Uri

base64Binary System.Byte[]

Boolean System.Boolean

Byte System.SByte

Date System.DateTime

dateTime System.DateTime

decimal System.Decimal

Double System.Double

duration System.TimeSpan

ENTITIES System.String[]

ENTITY System.String

Float System.Single

gDay System.DateTime

gMonthDay System.DateTime

gYear System.DateTime

gYearMonth System.DateTime

hexBinary System.Byte[]

ID System.String

IDREF System.String

IDREFS System.String[]

int System.Int32

XML Integration with ADO .NET 141

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

XML Schema Data
Type

.NET Framework Data Type

integer System.Decimal

language System.String

long System.Int64

month System.DateTime

Name System.String

NCName System.String

negativeInteger System.Decimal

NMTOKEN System.String

NMTOKENS System.String[]

nonNegativeInteger System.Decimal

nonPositiveInteger System.Decimal

normalizedString System.String

NOTATION System.String

positiveInteger System.Decimal

QName System.Xml.XmlQualifiedName

short System.Int16

string System.String

time System.DateTime

timePeriod System.DateTime

token System.String

unsignedByte System.Byte

unsignedInt System.UInt32

unsignedLong System.UInt64

unsignedShort System.UInt16

The XmlSchemaElement and XmlSchemaAttribute

classes both have AttributeType properties and

ElementType properties that contain an XmlSchema-

Datatype object once the schema has been validated and

compiled.

142 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

XML Integration with Relational Data

With previous versions of ActiveX Data Objects (ADO),

code written to work with relational data was different

from code written to work with hierarchical data. This

meant that you had two programming models to work

with. In the .NET Framework, several classes in XML

are integrated with classes in the ADO .NET architec-

ture, unifying the two programming models. In .NET, the

DataSet represents a relational data source in ADO

.NET, whereas the XmlDocument implements the DOM

in XML. The XmlDataDocument unifies the ADO .NET

and XML by representing relational data from a DataSet

and synchronizing it with the XML document model.

XML with MS SQL Server 2000

Before we move on, it is interesting to note that

Microsoft SQL Server can also directly return result sets

as XML. The following example returns all rows from

the Employees table from the Northwind sample data-

base encoded as nested XML:

SELECT * FROM Employees FOR XML AUTO, ELEMENTS

The partial result will be something like this:

<Employees>
<EmployeeID>1</EmployeeID>
<LastName>Davolio</LastName>
<FirstName>Nancy</FirstName>
<Title>Sales Representative</Title>
<TitleOfCourtesy>Ms.</TitleOfCourtesy>
<BirthDate>1948-12-08T00:00:00</BirthDate>
<HireDate>1992-05-01T00:00:00</HireDate>
<Address> 507 - 20th Ave. E. Apt. 2A</Address>

…

You can make use of this feature in .NET if you wish:

XML Integration with ADO .NET 143

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dim custXmlCMD As SqlCommand
'Define SQL Command that returns XML
custXmlCMD = _
New SqlCommand("SELECT * FROM Customers FOR XML AUTO,

ELEMENTS", northwindconnection)

'Execute the command directly into an XmlReader
Dim myXmlReader As System.Xml.XmlReader =_

custXmlCMD.ExecuteXmlReader()

Expect to see future versions of Microsoft SQL Server to

support more XML functionality. The next version of MS

SQL, code-named Yukon, will be integrated in the .NET

Framework. The stored procedures will run on the .NET

Common Language Runtime (CLR). In effect, all the

.NET XML features will also be available in Yukon.

DataSet and XML

Using ADO .NET, you can fill a DataSet from an XML

data source. The XML data source can be an XML

stream or document. You can use an XML data source to

supply the DataSet with data, schema information, or

both. You can use the information supplied and combine

it with existing data or schema in the DataSet.

ADO .NET also allows you to do the reverse. With a

DataSet, you can create its XML representation, with or

without its schema, in order to transport the DataSet

across HTTP for use on other XML-enabled platforms.

In the generated XML representation of the DataSet,

data is written in XML and the schema is written using

the XML Schema Definition (XSD) language, if it is

included inline in the representation. This provides a

convenient format for transferring DataSet contents to

and from remote clients over standard existing Internet

HTTP infrastructures.

144 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

DiffGrams

The DataSet uses the DiffGram XML format to keep

track of changes in XML data. This is particularly impor-

tant in a stateless web environment where it is not prac-

tical to maintain a continuous connection to a database.

The DiffGram format is used to identify current and orig-

inal versions of data elements. The DataSet uses the

DiffGram format to load, persist, and serialize its con-

tents for transport across a network connection. The

DataSet populates the DiffGram with all necessary infor-

mation to accurately recreate the contents, though not

the schema, of the DataSet. The DiffGram includes col-

umn values from both the original and the current row

versions, row error information, and row order.

The DiffGram format that is used by the .NET Frame-

work can be used as a basis for communication with

other platforms. When sending and retrieving a DataSet

from an XML web service, the DiffGram format is implic-

itly used, even though this is more or less transparent to

the developer. With the ReadXml and WriteXml method,

you can explicitly specify that the content to be read is a

DiffGram or the content is to be written as a DiffGram.

The DiffGram format is divided into three sections: the

current data, the original data, and an errors section.

<?xml version="1.0"?>
<diffgr:diffgram
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<Data>
...
</Data>

<diffgr:before>
</diffgr:before>

XML Integration with ADO .NET 145

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

<diffgr:errors>
</diffgr:errors>

</diffgr:diffgram>

The DiffGram format consists of the following blocks of

data:

<Data> </Data>: The name of this element, <Data>,

is used for illustration purposes only. In an actual

DiffGram, the <Data></Data> block represents a

DataSet or a row of a DataTable. Instead of the

<Data></Data> block, the DiffGram format con-

tains the current data, whether it has been modified

or not. An element, or row, that has been modified

is identified with the diffgr:hasChanges annotation.

<diffgr:before>: This block of the DiffGram format con-

tains the original version of a row. Elements in this

block are matched to elements in the <Data>

</Data> block using the diffgr:id annotation.

<diffgr:errors>: This block of the DiffGram format con-

tains error information for a particular row in the

<Data></Data> block. Elements in this block are

matched to elements in the <Data></Data> block

using the diffgr:id annotation.

The DiffGram also uses the following annotation that is

defined in the DiffGram namespace urn:schemas-

microsoft-com:xml-diffgram-v1:

id: Used to match the elements in the <diffgr:before>

and <diffgr:errors> blocks to elements in the

<Data> block. Values with the diffgr:id annotation

are in the form [TableName][RowIdentifier] (for

example: <products diffgr:id="Products1">).

parentId: Identifies which element from the <Data>

block is the parent element of the current element.

Values with the diffgr:parentId annotation are in the

146 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

form [TableName][RowIdentifier] (for example:

<Orders diffgr:parentId="Products1">).

hasChanges: Identifies a row in the <Data> block as

modified. The hasChanges annotation can have one

of the following three values:

inserted: Identifies an added row

modified: Identifies a modified row that contains an

original row version in the <diffgr:before>

block. Deleted rows will have an original row

version in the <diffgr:before> block, but

there will be no annotated element in the

<Data> block.

descent: Identifies an element where one or more

children from a parent-child relationship have

been modified

hasErrors: Identifies a row in the <Data> block with a

RowError. The error element is placed in the

<diffgr:errors> block.

Error: Contains the error description text of the

RowError for a particular element in the

<diffgr:errors> block

There are also two other annotations that are used by

DataSet when reading and writing contents as a

DiffGram. They are defined in the namespace

urn:schemas-microsoft-com:xml-msdata.

RowOrder: DataSet to preserve the row order of the

original data and identify the index of a row in a par-

ticular DataTable

Hidden: Identifies a column as having a ColumnMapping

property set to MappingType.Hidden. The attribute

is written in the format msdata:hidden[Column-

Name]="value".

XML Integration with ADO .NET 147

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

For example:

<Products diffgr:id="Products1"
msdata:hiddenSupplierTitle="Primary">.

Note that hidden columns are only written as a
DiffGram attribute if they contain data. Otherwise,
they are ignored.

Let’s look at a sample DiffGram. Below is the start or

header section:

<diffgr:diffgram
xmlns:msdata="urn:schemas-microsoft-
com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-
com:xml-diffgram-v1">

Below is the data section:

<ProductsDataSet>

<Products diffgr:id="Products1" msdata:rowOrder="0"
diffgr:hasChanges="modified">
<ProductID>SMCHEESE001</CustomerID>
<productname>Smelly Cheese</productname>
<price format="dollar">100.99</price>
<expirydate>01/01/2009</expirydate>

</Products>

<Products diffgr:id="Products2" msdata:rowOrder="1"
diffgram:hasErrors="true">
<ProductID>SFCHEESE001</CustomerID>
<productname>Soft Cheese</productname>
<price format="dollar">79.99</price>
<expirydate>01/01/2003</expirydate>

</Products>

<Products diffgr:id="Products3" msdata:rowOrder="2">
<ProductID>HLCHEESE001</CustomerID>
<productname>Holee Cheese</productname>
<price format="dollar">49.99</price>
<expirydate>01/12/2003</expirydate>

148 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

</Products>

</ProductsDataSet>

Below is the Diffgr section:

<diffgr:before>
<Products diffgr:id="Products1" msdata:rowOrder="0">
<ProductID>SMCHEESE001</CustomerID>
<productname>Smelly Cheese</productname>
<price format="dollar">150.99</price>
<expirydate>01/01/2009</expirydate>

</Products>

</diffgr:before>

<diffgr:errors>
<Products diffgr:id="Products2" diffgr:
Error="Optimistic concurrency violation.">

</Products >

</diffgr:errors>

</diffgr:diffgram>

In the sample DiffGram above, you should note that the

price for Smelly Cheese has changed from $150.99 to

$100.99. This is probably because this product does not

sell very well. Also, Soft Cheese caused an error with

the message “Optimistic concurrency violation.” This

could probably be due to the fact that the record for Soft

Cheese has changed since it was last retrieved from the

database.

Working with ReadXml

With ADO .NET, you can create a DataSet from an XML

source and an XML document from a DataSet. You have

great flexibility with how the data is read and the XML

document is created.

XML Integration with ADO .NET 149

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

The ReadXml method of the DataSet object is used to fill

it with data from an XML data source.

The following table describes the ReadXml method:

Method Description

ReadXml Filling the DataSet with data from an XML
data source takes two arguments: the XML
data source and an optional
XmlReadMode. The data source can be a
file, a stream, or an XmlReader object.

ReadXml also creates the relational
schema of the DataSet depending on the
specified XmlReadMode and whether or
not a relational schema already exists.

The following table describes the values that XmlRead-

Mode can have:

XmlReadMode Description

Auto This is the default value. ReadXml
examines the XML source and chooses
the most appropriate option according
to the following rules:

If XML source is a DiffGram, DiffGram
is used.

If the DataSet contains a schema or
the XML source contains an inline
schema, ReadSchema is used.

Otherwise, InferSchema is used.

If you know the format of the XML
source, for optimal performance it is
best that you explicitly specify the
XmlReadMode instead of using auto.

ReadSchema Reads any inline schema and loads
the data and schema in the DataSet. If
the DataSet already contains a
schema, new tables are added to the
existing schema from the inline
schema. If any tables in the inline
schema already exist in the DataSet,
an exception is thrown.

150 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

XmlReadMode Description

ReadSchema
(cont.)

ReadSchema does not allow you to
modify existing tables in the schema.
Inline schema is defined using XML
Schema Definition (XSD) language.

IgnoreSchema Loads data onto the DataSet using the
existing schema and ignoring any
inline schema. Any data that does not
conform to the schema is discarded. If
the DataSet does not contain any
schema, no data is loaded. If the data
is a DiffGram, IgnoreSchema has the
same functionality as DiffGram.

InferSchema Ignores any inline schema, infers the
schema from the structure of the XML
data, and then loads the data. If the
DataSet contains a schema, it is
extended by adding new tables where
there is no existing table or adding
columns to existing tables. If an
inferred table already exists with a
different namespace or if any inferred
columns conflict with existing columns,
ReadXml throws an exception.

DiffGram Reads a DiffGram and adds the data
to the current schema. It merges new
rows with existing rows using the
unique identifier values to match rows.

Fragment Reads multiple XML fragments until the
end of the stream is reached.
Fragments that match the DataSet
schema are appended to their
respective table. Any other fragments
are discarded.

Note: If you use an XmlReader object as the data
source and the XmlReader is positioned part of the
way into an XML document, ReadXml will read the
next element and treat it as the root element.
ReadXml will continue reading up to and until the
end of the element node only. This does not apply if
you are using the fragment XmlReadMode.

XML Integration with ADO .NET 151

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

ReadXml processes DTD schema differently. If the data

source contains entries defined in a DTD schema and the

data source is specified as a filename, a stream, or a

non-validating XmlReader, ReadXml throws an excep-

tion. For XML data with DTD entries, you must first

create an XmlValidatingReader object with the Entity-

Handling property set to ExpandEntities, and then use it

as the data source to ReadXml. XmlValidatingReader will

expand the entities before it is read by the DataSet.

Writing XML from DataSet

We have seen how XML documents can be used as a data

source for a DataSet. The DataSet can also generate

XML data from the data and schema it contains. The

XML can be generated with or without its schema. If you

included schema information inline, then XML Schema

Definition (XSD) language is used. The schema contains

table definitions, relations, and constraints.

The following table describes the methods that you can

use to write XML:

Method Description

GetXml Returns the XML in a string and does
not take any arguments. Only the data
is returned. To get the schema, you
must use the GetXmlSchema method.

GetXmlSchema Returns the XML schema in a string and
does not take any arguments

WriteXml Writes the XML document on the
specified data target, which takes two
arguments. The first is the data target,
and the second is an optional
XmlWriteMode. The data target can be
a stream, a file, or an XmlWriter object.

152 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

As with ReadXml, WriteXml allows you great flexibility

in how the XML document is created in the data target.

When XML data is written from a DataSet, only the cur-

rent version of the rows are written. You can, if you wish,

specify that the data should be written as a DiffGram.

This way, both original and current values for the rows

are included.

The following table describes the values that

XmlWriteMode can have:

XmlWriteMode Description

IgnoreSchema This is the default value. The DataSet
writes the XML data without an XML
schema.

WriteSchema Writes the current contents of the
DataSet as XML with the relational
structure as inline XML Schema

DiffGram Writes the XML as a DiffGram,
including original and current values
of rows

You can also specify how a column of a table is written in

XML by changing the ColumnMapping property of the

DataColumn object. The following table shows the differ-

ent MappingType values that the ColumnMapping prop-

erty can have and the effect on the output XML.

MappingType Effects on Output XML Data

Element This is the default property value. The
column is written as an XML element.
The ColumnName is the name of the
element, and the value of the current
row for the column is written as the
text, e.g., <ColumnName>Column
Contents row</ColumnName>.

XML Integration with ADO .NET 153

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

MappingType Effects on Output XML Data

Attribute The column is written as an XML
attribute for the current row. The
ColumnName is the name of the
attribute, and the contents of the
column are written as the value.

SimpleContent The column contents are written as
text in the XML element for the current
row. You cannot use SimpleContent
for columns of a table that have other
columns set as element or have
nested relations.

Hidden The column is ignored and not written
to the XML output.

The ColumnMapping property is also used when writing

the XML Schema of the DataSet.

XML Schemas from DataSet

The schema of a DataSet can be defined, just like its

tables, columns, relations, and constraints. You can write

this schema in XML Schema Definition (XSD) language.

The XML Schema can be generated and transported with

the data in an XML document, or it can be generated

separately to a data target. A data target can be a file, a

data stream, a string, or an XmlWriter object. The

ColumnMapping property can be used, just as with XML,

to specify how a table is represented in the XML

Schema.

To write the schema, the WriteXmlSchema and GetXml-

Schema methods of the DataSet are used. GetXml-

Schema simply returns the schema in a string. It does

not take any arguments. The WriteXmlSchema method

requires one argument specifying the data target.

154 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
' Declare System.IO.StreamWriter
Dim xmlSW As System.IO.StreamWriter = _

New System.IO.StreamWriter("ProductsWriter.xsd")

' Write DataSet XML Schema to a file
ProductDS.WriteXmlSchema("ProductsFile.xsd")

' Write DataSet XML Schema to a StreamWriter
ProductDS.WriteXmlSchema(xmlSW)

' Close StreamWriter
xmlSW.Close()

' Write XML schema in a string
Dim XSDStringSchema As String = ProductDS.GetXmlSchema()

...

The generated XML Schema is also useful for generating

typed DataSets. For more information about typed Data-

Sets, please refer to the next section. The DataSet, along

with late-bound access to values through weakly typed

variables, provides access to data through strongly typed

metaphors. This allows tables and columns, which form

part of the DataSet, to be accessed using user-friendly

names and strongly typed variables.

Typed DataSets from XSD Schema

A typed DataSet is a class that is inherited from a Data-

Set. As well as inheriting all the methods, events, and

properties of a DataSet, a typed DataSet also provides

strongly typed methods, events, and properties in rela-

tion to the schema. This means that you can access

columns by name instead of using collection-based meth-

ods. Using typed DataSets has the following advantages:

� Development of a typed DataSet

� Provides for the localization of code

XML Integration with ADO .NET 155

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Allows you to extend the power of the DataSet by

overriding its methods or giving them more polymor-

phic behaviors

� Enhances the readability of code

� Makes use of Visual Studio .NET IntelliSense fea-

tures (automatically completes codes as you type)

� Catches type mismatch errors at compile time rather

than at run time

From an XSD XML Schema, you can generate a strongly

typed DataSet using the xsd.exe tool provided with the

.NET Framework SDK.

The syntax for using xsd.exe is shown here:

xsd.exe /d /l:C# XSDSchemaFileName.xsd
/n:XSDSchema.Namespace

/d instructs xsd.exe to generate a DataSet, and /l: defines

what language to use (C#, in this case). /n: is optional

and instructs xsd.exe to also generate a namespace (in

this case, XSDSchema.Namespace). The source file for

the schema is defined as XSDSchemaFileName.xsd, and

the output code will be in a file called XSDSchemaFile-

Name.cs. Note that the extension will depend on the

language used. The generated code can also be compiled

as a module or library and used in an ADO .NET

application.

DataSet and XmlDataDocument

The DataSet provides you with a relational view and

access to data. The XML classes available in the .NET

Framework provide you with a hierarchical view and

access to data. Historically, the two models have been

used separately. In the .NET Framework, you can have

real-time synchronous access to both. The relational

model represented by DataSet objects can be

156 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

synchronized with the hierarchical model represented by

XmlDataDocument objects.

Once a DataSet is set to synchronize with an XmlData-

Document, both objects, in effect, are sharing a single set

of data. Changes made through one object are automati-

cally reflected real-time in the other object. The ability to

share data between the DataSet and the XmlDataDocu-

ment gives great flexibility by allowing access to services

built around DataSet (such as Web Forms and Windows

Forms controls) and XML services (such as XML

Schema Definition (XSD) language, Extensible Style-

sheet Language (XSL), XSL Transformations (XSLT),

and XML Path Language (XPath)) all with one set of

data.

Synchronizing DataSet with
XmlDataDocument

You have different options from which to choose to syn-

chronize a DataSet with an XmlDataDocument.

The first option you have is to populate a DataSet with

relational data and schema and then synchronize it with a

new XmlDataDocument. This option provides a hierar-

chical view to existing relational data sources.

' Create a DataSet
Dim aDataSet As DataSet = New DataSet

'*---*
'* Add code here to populate DataSet with schema and data*
'*---*

' Create XmlDataDocument and link it to a DataSet
Dim xmlDataDoc As XmlDataDocument = New

XmlDataDocument(aDataSet)

The other option is to populate a DataSet with XML

Schema (which can generate a strongly typed DataSet),

synchronize it with an XmlDataDocument, and then load

the XmlDataDocument from an XML data source, such

XML Integration with ADO .NET 157

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

as an XML document. This provides the reverse option,

which is a relational view to existing hierarchical data

sources. The name of the tables and columns in the

DataSet schema must match the names of the XML ele-

ments that you want to synchronize with. The matching

is case-sensitive, and non-matching elements are

ignored. This allows you to have a relatively small rela-

tional window view of part of a large XML document.

While XmlDataDocument will preserve the whole XML

document, only a portion of it (the portion you need) will

be exposed through the DataSet.

' Declare and create the DataSet
Dim aDataSet As DataSet = New DataSet

'*---*
'* Add code here to populate the DataSet with schema only*
'*---*

' Create XmlDataDocument and link it to a DataSet
Dim xmlDataDoc As XmlDataDocument = New
XmlDataDocument(myDataSet)

' Load the XmlDataDocument with XML data
xmlDataDoc.Load("anXMLDocument.xml")

Note: You cannot load an XmlDataDocument if it
is synchronized with a DataSet that contains data. In
such a case, an exception will be thrown.

So far, the options have been DataSet-centric; that is, you

start from the DataSet first. A third option is XmlData-

Document-centric. You create a new XmlDataDocument

and load it from an XML data source. You then access the

relational view of the data using the DataSet property of

the XmlDataDocument. As with the other options, the

schema of the DataSet is important. The table and col-

umn names in the schema must match the names, in a

case-sensitive manner, of the XML elements with which

you want to synchronize.

158 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

' Create XmlDataDocument
Dim xmlDataDoc As XmlDataDocument = New XmlDataDocument

' Create the DataSet and link it to the XmlDataDocument
Dim aDataSet As DataSet = xmlDataDoc.DataSet

'*---*
'* Add code here to populate the DataSet with schema *
'*---*

' Load the XmlDataDocument with XML data
xmlDataDoc.Load("anXMLDocument.xml")

If the DataSet is populated from an XML data source

using ReadXml, the returned XML using WriteXml may

differ considerably from the original. The main reason is

that DataSet does not maintain formatting, such as white

spaces, or hierarchical information (remember that

DataSet stores relational information), such as element

order. The DataSet will also not contain elements that do

not conform to the schema in the DataSet. This situation

may not be a problem if you are only interested in the

data, but if fidelity with the original XML document is

required, then synchronization will maintain fidelity with

the XML data source. Hierarchical element structure of

the XML data source is maintained by XmlDataDocu-

ment, while at the same time allowing the required part

of the data to be accessed through DataSet.

Results of synchronization between a DataSet and an

XmlDataDocument may differ, depending on whether or

not the DataRelation objects are nested.

Nested DataRelations

In ADO .NET DataSet, relationships between tables are

maintained and represented by the DataRelation. The

parent-child relationships of columns are managed solely

through relations. The tables and columns, as far as the

DataRelation is concerned, are separate entities. In the

hierarchical XML representation of data, the parent-child

XML Integration with ADO .NET 159

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

relationships are represented by nested child elements

within parent elements. To facilitate nested relationships

when a DataSet is synchronized with an XmlDataDocu-

ment, or even when XML is written through WriteXml,

the DataRelation has a nested Boolean property with a

default value of False. Setting the Nested property to

True causes the child rows to be nested within the par-

ent column when outputting XML data or synchronizing

with XmlDataDocument.

Consider the following figure and the tables’ relation in

the Northwind sample database included with MS SQL

2000:

Now consider the following console application:

Imports System
Imports System.Xml
Imports System.Data
Imports System.Data.SqlClient

Module Module1

Sub Main()

' Establish connection to the database
Dim nwindConn As SqlConnection = _
New SqlConnection("Data Source=localhost;" & _
"Integrated Security=SSPI;Initial _

160 Chapter 5

Figure 5-2: Relation between the Categories and Products
tables

TEAM LinG - Live, Informative, Non-cost and Genuine!

Catalog=Northwind;")

'Define a data adapter for category
Dim categoryDA As SqlDataAdapter = _
New SqlDataAdapter("SELECT CategoryID, _
CategoryName FROM Categories", nwindConn)

Dim productDA As SqlDataAdapter = _
New SqlDataAdapter("SELECT ProductID, _
CategoryID," & " ProductName, UnitPrice _
FROM Products", nwindConn)

'Open Database connection
nwindConn.Open()

'Create data set to hold data
Dim catDS As DataSet = New DataSet
("CategoryProducts")

'Populate DataSet with data from the two tables
categoryDA.Fill(catDS, "Categories")
productDA.Fill(catDS, "Products")

'Close connection
nwindConn.Close()

'Create the relationship between the two tables
Dim catProdcutRel As DataRelation = _

catDS.Relations.Add("catProdcut", _
catDS.Tables("Categories").Columns _
("CategoryID"), catDS.Tables _
("Products").Columns("CategoryID"))

'Write data as XML
catDS.WriteXml("NotNestedRelation.XML")

'Set Nested to true
catProdcutRel.Nested = True

'Write data as XML
catDS.WriteXml("NestedRelation.XML")

End Sub

End Module

XML Integration with ADO .NET 161

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Since the default for the Nested property of the Data-

Relation object is False, the child elements are not

nested within the parent elements. The following code is

generated in the NotNestedRelation.XML file.

<?xml version="1.0" standalone="yes"?>
<CategoryProducts>

...

<Categories>
<CategoryID>4</CategoryID>
<CategoryName>Dairy Products</CategoryName>

</Categories>
<Categories>
<CategoryID>5</CategoryID>
<CategoryName>Grains/Cereals</CategoryName>

</Categories>
<Categories>
<CategoryID>6</CategoryID>
<CategoryName>Meat/Poultry</CategoryName>

</Categories>

...

<Products>
<ProductID>2</ProductID>
<CategoryID>1</CategoryID>
<ProductName>Chang</ProductName>
<UnitPrice>19</UnitPrice>

</Products>
<Products>
<ProductID>3</ProductID>
<CategoryID>2</CategoryID>
<ProductName>Aniseed Syrup</ProductName>
<UnitPrice>10</UnitPrice>

</Products>
<Products>
<ProductID>4</ProductID>
<CategoryID>2</CategoryID>
<ProductName>Chef Anton's Cajun
Seasoning</ProductName>

<UnitPrice>22</UnitPrice>
</Products>

162 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

...

</CategoryProducts>

Both elements, Categories and Products, in the Not-

NestedRelation.XML file are siblings. However, in the

NestedRelation.XML file, the Nested property of the

DataRelation object is set to True. The XML output in

the NestedRelation.XML file is different than that output

in NotNestedRelation.XML file. The following code is

generated in the NestedRelation.XML file:

<?xml version="1.0" standalone="yes"?>
<CategoryProducts>
<Categories>
<CategoryID>1</CategoryID>
<CategoryName>Beverages</CategoryName>
<Products>
<ProductID>1</ProductID>
<CategoryID>1</CategoryID>
<ProductName>Chai</ProductName>
<UnitPrice>18</UnitPrice>

</Products>
<Products>
<ProductID>2</ProductID>
<CategoryID>1</CategoryID>
<ProductName>Chang</ProductName>
<UnitPrice>19</UnitPrice>

</Products>

...

</Categories>

<Categories>
<CategoryID>2</CategoryID>
<CategoryName>Condiments</CategoryName>
<Products>
<ProductID>3</ProductID>
<CategoryID>2</CategoryID>
<ProductName>Aniseed Syrup</ProductName>
<UnitPrice>10</UnitPrice>

</Products>
<Products>

XML Integration with ADO .NET 163

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

<ProductID>4</ProductID>
<CategoryID>2</CategoryID>
<ProductName>Chef Anton's Cajun
Seasoning</ProductName>

<UnitPrice>22</UnitPrice>
</Products>

...

</Categories>

...

</CategoryProducts>

As you can see, Products is now a child element of

Categories.

Creating DataSet Relational Schema from XML
Schema

For the most part, DataSet works mainly from the point

of view that the source of the data is relational, and from

this, we generate the XML data and schema. However,

the DataSet can also do the reverse; that is, generate the

relational schema from XML Schema (XSD) or even infer

the schema from the XML data.

Creating from XML Schema (XSD)

In general, a table is generated for each complexType

child element nested in a complexType element in the

XSD schema. The structure of the table depends on the

definition of the complex type. The parent complexType

element usually defines the DataSet itself. If the

complexType element is further nested inside another

complexType element, the nested complexType element

will also generate a table and will be mapped to a Data-

Table object within the DataSet. This usually happens

when there are nested relations.

164 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

Consider the following XSD schema:

<?xml version="1.0" standalone="yes"?>
<xs:schema id="CategoryProducts"

xmlns=""
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xs:element name="CategoryProducts"
msdata:IsDataSet="true">
<xs:complexType>
<xs:choice maxOccurs="unbounded">

<xs:element name="Categories">
<xs:complexType>
<xs:sequence>
<xs:element name="CategoryID"

type="xs:int"
minOccurs="0" />

<xs:element name="CategoryName"
type="xs:string"
minOccurs="0" />

<xs:element name="Products"
minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<xs:element name="ProductID"

type="xs:int"
minOccurs="0" />

<xs:element name="CategoryID"
type="xs:int"
minOccurs="0" />

<xs:element name="ProductName"
type="xs:string"
minOccurs="0" />

<xs:element name="UnitPrice"
type="xs:decimal"
minOccurs="0" />

</xs:sequence>
</xs:complexType>

XML Integration with ADO .NET 165

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>

<xs:unique name="Constraint1">
<xs:selector xpath=".//Categories" />
<xs:field xpath="CategoryID" />

</xs:unique>

<xs:keyref name="catProdcut"
refer="Constraint1"
msdata:IsNested="true">

<xs:selector xpath=".//Products" />
<xs:field xpath="CategoryID" />

</xs:keyref>
</xs:element>

</xs:schema>

With this schema, two tables will be created:

Categories(CategoryID, CategoryName)
Products(ProductID, CategoryID, ProductName, UnitPrice)

The type of each column is converted to the appropriate

.NET data type. The XSD schema also causes con-

straints and relations to be created.

Mapping XSD Constraints to DataSet Constraints

Constraints are used to specify restrictions on elements

and the values they can hold in any instance of the docu-

ment. For example, if you specify the key constraint on

CategoryID child element of the Categories element in

the schema, the values of CategoryID in any document

instance must be unique and cannot be Null. With XSD

schemas, constraints are specified with elements and

attributes. The common constraints used are:

166 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Uniqueness defined by the unique element

� A key specified by the key element

� A reference key specified by the keyref element

With the unique element, you can also specify msdata

attributes:

� msdata:ConstraintName, where the value is used as

the constraint name. Otherwise, the name attribute

provides the value of the constraint name.

� msdata:PrimaryKey: If the value is true, the con-

straint is created in the DataSet with the IsPrimary-

Key property set to True.

...
<xs:unique name="Constraint1"

msdata:ConstraintName="UCatID"
msdata:PrimaryKey="true">

<xs:selector xpath=".//Categories" />
<xs:field xpath="CategoryID" />

</xs:unique>
...

The mapping process creates a unique constraint on the

CategoryID column, as shown in the following DataSet:

DataSetName: CategoryProducts
TableName: Categories
ColumnName: CategoryID

AllowDBNull: False
Unique: True

ConstraintName: UCatID
Type: UniqueConstraint
Table: Categories
Columns: CategoryID
IsPrimaryKey: True

You can, however, have unique elements where

msdata:PrimaryKey="false." In such a case, AllowDB-

Null will be True, meaning the column value needs to be

unique or Null.

XML Integration with ADO .NET 167

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

With the key element, you can also specify the same

msdata attributes as with the unique element. The main

difference is that with the key element, the AllowDBNull

property in the DataSet constraint is always set to False.

The IsPrimaryKey property depends on the value of the

msdata:PrimaryKey attribute.

Note: Compound keys can be specified by adding
another <xs:field/> element for each additional
column in the key.

With the keyref element, you establish relationships

between elements in the document analogous to foreign

keys in the relational data model. When mapping occurs,

a foreign key is generated in the corresponding table in

the DataSet and, by default, a relation, with the Parent-

Table, ChildTable, ParentColumn, and ChildColumn prop-

erties specified, is generated. The keyref element does

not have the msdata:PrimaryKey attribute but can have

additional msdata attributes:

� msdata:ConstraintOnly: If the value is True, only a

constraint is created in the DataSet; otherwise, both

constraint and relation are created.

� msdata:UpdateRule: Sets the UpdateRule constraint

property to this value if specified; otherwise, the

UpdateRule property is set to “Cascade.”

� msdata:DeleteRule: Sets the DeleteRule constraint

property to this value if specified; otherwise, the

DeleteRule property is set to “Cascade.”

� msdata:AcceptRejectRule: Sets the AcceptReject-

Rule constraint property to this value if specified;

otherwise, the AcceptRejectRule property is set to

“None.”

� msdata:IsNested: Sets the IsNested relation property

to this value if specified; otherwise, the IsNested

property is set to “False.”

168 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
<xs:keyref name="catProdcut"

refer=" UCatID"
msdata:IsNested="true">

<xs:selector xpath=".//Products" />
<xs:field xpath="CategoryID" />

</xs:keyref>
...

The above will yield the following foreign key on the

Products table:

ConstraintName: catProdcut
Type: ForeignKeyConstraint

Table: Products
Columns: CategoryID

RelatedTable: Categories
RelatedColumns: CategoryID

DataSet Relations from XSD

There are three ways that DataSet relationships are

specified in XSD:

� By inference in nested complex types

� Through msdata:Relationship annotation

� Through an xs:keyref element without the

msdata:ConstraintOnly attribute or with the

msdata:ConstraintOnly value set to False

Nested complex types indicate a parent-child relation-

ship, which was the case between Categories and Prod-

ucts in our previous example. We also have already seen

keyref elements, so we will move on to msdata:Relation-

ship in the annotation element.

...
<xs:annotation>
<xs:appinfo>
<msdata:Relationship name="CustomerProductRelation"

msdata:parent="Categories"
msdata:child="Products"
msdata:parentkey=" CategoryID"

XML Integration with ADO .NET 169

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

msdata:childkey=" CategoryID"/>
</xs:appinfo>

</xs:annotation>
...

The above produces about the same result as the keyref

example. However, the values of the constraint are not

set. These are values, such as IsPrimaryKey and

AllowDBNull, that you need to set using the constraint

elements.

Inferring from XML

In certain situations, you might end up with an XML doc-

ument that does not contain any inline schema nor is it

one provided in a separate file. The DataSet can, how-

ever, still generate a schema from the XML document by

analyzing the basic structure of the XML and inferring

the schema.

The first step in the inference process is to determine

the tables. ADO .NET first determines which elements

represent tables. The remaining XML columns and rela-

tions are inferred. This is done by the following inference

rules:

� Elements that have attributes are inferred as tables.

� Elements that have child elements are inferred as

tables.

� Elements that repeat are inferred as a single table.

� Root elements with no attributes and no child ele-

ments inferred as columns are inferred as a DataSet.

Otherwise, the root element is inferred as a table.

� Attributes are inferred as columns.

� Non-repeating elements with no attributes or child

elements are inferred as columns.

170 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Elements inferred as tables that are nested within

other elements also inferred as tables cause a nested

DataRelation to be inferred between the two tables.

A primary key column named "TableName_Id" is

inferred, added to both tables, and used by the Data-

Relation. A ForeignKeyConstraint is also inferred

between the two tables using the "TableName_Id"

column.

� When elements are inferred as tables that contain

text but have no child elements, a new column

named "TableName_Text" is inferred for the text of

each of the elements.

The inference process, however, is non-deterministic.

Different instances of the same XML document intended

to have the same schema can generate different

schemas.

Consider:

<RootElement>
<AnElement>a text value</AnElement>
<AnElement>another text value</AnElement>

</RootElement>

This infers DataSet: RootElement, table: AnElement

because AnElement element is repeating.

Now consider:

<RootElement>
<AnElement>a third text value</AnElement>

</RootElement>

This infers DataSet: NewDataSet, table: RootElement,

column: AnElement because AnElement element does

not have attributes, is not repeating, and has no child

elements.

XML Integration with ADO .NET 171

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary

XML is the next stage in the development of the web

standard and languages. The hierarchical model that is

represented by XML data is fundamentally different from

the relational model in the DataSet. ADO .NET and

.NET XML classes allow the bridging of those two mod-

els in a consistent and easy manner.

XML is also the underlying message format used for Web

Services. Visual Studio .NET simplifies development by

shielding the developer from the complexities of estab-

lishing communication links in XML. It is all done trans-

parently in the background. However, you also have the

power to manipulate and deal with XML directly, if that is

what is required. This makes ADO .NET and the .NET

Framework in general a powerful and flexible tool for

dealing with any type of data, including XML.

172 Chapter 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 6

Practical ADO .NET
Programming
(Part One)

In This Chapter

This chapter shows the practical use of the DataSet and

DataAdapter classes that are utilized to interact with the

database. It is recommended that you read Chapters 2

and 3 before reading this chapter. Through the use of a

simple case study, you will learn how to work with data

access components, to work with XML, and to build Web

Services. This chapter will demonstrate how to retrieve

data from the database to a DataSet. In Chapter 7, you

will learn how to update changes from a DataSet to the

database.

Chapter 7 will use the Web Service we build in this chap-

ter and continue with the case study. In this chapter, we

will only look at the Web Service aspect of the case

study. We will look at the clients in Chapter 7. We will

also concentrate more on the data service side of things.

We will not go into the details of security and maintaining

user sessions, as they have little bearing on the database

interaction. Instead, we will concentrate on the functions

and methods that the service will expose for manipulat-

ing data from the Northwind database.

173

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Case Study

The Northwind Traders sample database that is included

with Microsoft SQL Server 2000 contains the sales data

for a fictitious company called Northwind Traders, which

imports and exports specialty foods from around the

world. Northwind Traders wants to provide better ser-

vice for its customers and partners by allowing them

access to their order information online. Furthermore,

Northwind Traders wants its employees who are working

in other countries to be able to amend or create new

orders online.

To meet part of the requirements of Northwind Traders,

you decide to build a simple Web Service to do the

following:

� Allow customers to manage orders

� Allow customers to view their orders and import

them in other packages

Employee functionality requirements:

� Logon

� Search orders (filter by employee and/or customer)

� Create an order

� Fill in an order

� Fill in order details

� Modify an order

� Change orders

� Change/delete order details line entries

� Delete an order entirely (pending orders only)

174 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

Customer functionality requirements:

� Logon

� Search orders (self only)

� Export orders to file

The Web Service

To meet part of these requirements, we are going to

implement a Web Service. The Web Service will allow

customers to have access to the data over the Internet.

The Web Service will expose two types of methods:

� Data retrieval: These are different methods that

will return data to the clients given a certain criteria.

� Data update: These methods allow clients to

change certain information in the database. These

also include deletion and creation of records.

Note: Web Services are based on the stateless
principle. That means a Web Service does not main-
tain state across method calls nor does it maintain
any database connections.

Designing the Web Service

Before we rush in and start programming, we need to

first plan and design the Web Service. The first step is to

name our Web Service. For this case study, we will call

our Web Service OrderProcessingWS.

Practical ADO .NET Programming (Part One) 175

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

OrderProcessingWS

Now that we know what we are going to call our Web

Service, we need to decide what data retrieval methods

we are going to expose to the clients. This is important

because we will also need to use appropriate names for

our methods. One thing to remember about the method

names in Web Service is that they must be unique.

Note: The method name of a Web Service can be
different from the name of the method that imple-
ments it in the class. This is useful when you have
polymorphic methods.

Data Retrieval Methods

Class
Method
Name

Web Service
Method Name

Description

GetOrders GetOrders_By_
Customer

Parameter:
CustomerID (String)

Return:
Dataset
Returns a summary of orders for
the given customer

GetOrders GetOrders_By_
Date

Parameter:
FromDate (Date),
ToDate (Date)

Return:
Dataset
Returns a summary of the different
orders for a given date range

GetOrders GetOrders_By_
Customer_Date

Parameter:
CustomerID(String),
FromDate (Date),
ToDate (Date)

Return:
Dataset
Returns a summary of orders for a
given customer within a given date
range

176 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

Class
Method
Name

Web Service
Method Name

Description

GetOrder-
Details

GetOrderDetails Parameter:
OrderID (Integer)

Return:
Dataset
Returns the line entries for a given
order

Get Full-
Orders

GetFullOrders Parameter:
CustomerID (String)

Return:
Dataset
Returns detailed information about
an order

Get Full-
Orders

GetFullOrders_
By_Customer

Parameter:
CustomerID (String)

Return:
Dataset
Returns detailed information about
orders for the given customer

Implementing OrderProcessingWS

Now that we have designed the skeleton for Order-

ProcessingWS, we can start the next phase. We will use

Visual Studio .NET for the implementation and as the

development environment. You will also need to have

Internet Information Server (IIS) installed and accessible

to your development machine. For development pur-

poses, it is always better to have IIS installed locally.

After developing and debugging, you can always move

the Web Service to a production machine.

Practical ADO .NET Programming (Part One) 177

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Setting Up IIS

Before you begin, first set up a virtual directory that you

will use on IIS. This is not necessary, but if you let Visual

Studio .NET set up the directory for you, your files will

be stored in a directory under your default web site

directory. Usually, this is in c:\inetpub\wwwroot.

To set up your virtual directory, use the following steps:

� Open the IIS management console from administra-

tive tools.

� Expand web sites for your local machine by

right-clicking Default Web Site.

� Choose New on the context menu and select Virtual

Directory. . ., as shown in Figure 6-1.

Follow the instructions for the wizard. For the purpose of

this case study, we will use a virtual directory called

OrderProcessingWS. You can point the virtual directory

to the appropriate directory where you plan to store your

source code. Make sure you have the appropriate access

permission to the directory.

178 Chapter 6

Figure 6-1: Creating a virtual directory in IIS between Cate-
gories and Products

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: ASP .NET code will not work unless the ASP
.NET run time is installed. This is usually done when
you install the .NET Framework. This may not be the
case if IIS was not installed at the time the .NET
Framework was installed. To check, ensure that you
have the “Aspnet_Client” folder installed under
Default Web Sites. If it is not installed, reinstall the
.NET Framework.

Creating OrderProcessingWS Project

The next step is to actually create the project that you

will be using for the development of OrderProcess-

ingWS. Create a new Visual Basic ASP .NET Web Ser-

vice project. Call it OrderProcessingWS. This should

point to the virtual directory you created before (e.g.,

“http://localhost/OrderProcessingWS,” if you are using

IIS locally). See Figure 6-2.

Practical ADO .NET Programming (Part One) 179

P
a
rt

II

Figure 6-2: Creating the OrderProcessingWS project

TEAM LinG - Live, Informative, Non-cost and Genuine!

Warning: Make sure you have the right level of
permission on the virtual directory and you have
write enabled. Otherwise, you will get an access
denied error when you try to create the project.

Visual Studio creates the necessary files and directories

that you will need to write the Web Service. ASP .NET

application files have file extension .aspx, whereas Web

Services have file extension .asmx. Visual Studio creates

a default Web Service file called Service1.asmx. This file

should be renamed to OrderProcessingWS.asmx. You

should then set the page as the start page by right-click-

ing on it and choosing Set As Start Page on the context

menu.

Open the OrderProcessingWS.asmx file, if it is not

already open. This can be done by double-clicking the file

in the Solution Explorer. This should open the file in the

design view. Double-click in the design view to get to the

code.

Tip: You can right-click on the file in Solution
Explorer and choose View Code to access the code
directly and faster.

As you can see, Visual Studio has generated some code

for you. Change the class name to OrderProcessingWS.

You can uncomment the suggested “Hello World” exam-

ple if you wish and try it out. Delete that section of the

code once you are done.

Web Service Namespace

For each Web Service you create, you will need to give it

a namespace. This namespace is different from the .NET

namespaces and is used to uniquely identify the Web

Service on the Internet. Usually, you would use a

namespace that you have control over, such as the web

site of your company (for example, http://mycompany.

com/mywebservice/OrderProcessingWS/). We will use

180 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

http://ProgrammingADODotNET/OrderProcessingWS/

as our namespace, so go ahead and change the default

http://tempuri.org/ to http://ProgrammingADODotNET/

OrderProcessingWS/. You should have a code section like

that shown in the following figure.

Initialization Code

Before we add our methods, we first need to add our ini-

tialization codes. We will be using MS SQL Server, so we

need to define a connection string to the server. We do

not want to hard-code this data, so we will put it in the

application configuration file. For Web Services, the con-

figuration file is usually called web.config. Open the

web.config file and create an <appSettings> section.

Note: Please be aware that XML tags are case-
sensitive. <appSettings> must be entered in exactly
the same case shown here.

Then create a key called SQLConnectionString whose

value is the connection string to your database. In the

example, we are using the local database, so the data

source is 127.0.0.1. The user name, password, and

Practical ADO .NET Programming (Part One) 181

P
a
rt

II

Figure 6-3: The skeleton of the class and namespace

TEAM LinG - Live, Informative, Non-cost and Genuine!

default catalog is also provided. See the code listing

below as an example. As you probably have noticed, the

web.config file is actually an XML file. Here is the start

section of this file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="SQLConnectionString"
value="data source=127.0.0.1;user id=sa;password=sa;
Initial Catalog=northwind" />

</appSettings>
...

You will now need to modify your code so that you can

access the configuration file. For this, you need to use

the methods of the ConfigurationSettings class. The

ConfigurationSettings class is found in the System.Con-

figuration namespace. You can reference the namespace,

or you can use the imports construct so that you do not

have to type the full name of the class (i.e., System.Con-

figuration.ConfigurationSettings). We are also going to

use classes in the System.Data.SqlClient namespace, so

import that as well.

Expand the Web Services Designer Generated Code

region in the code section of OrderProcessingWS. In the

class, you need to declare a private string variable to hold

the connection string. You then initialize the variable in

the class constructor. The constructor is the New()

method inside the class. To get the value of the

SQLConnectionString key that you defined earlier in the

web.config file, use the ConfigurationSettings.App-

Settings method.

...
SQLConnectionString =_
configurationSettings.AppSettings("SQLConnectionString")
...

182 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

See the following code sample for a detailed listing:

Imports System.Web.Services
Imports System.Configuration
Imports System.Data.SqlClient

<WebService(_
Namespace:= _
"http://ProgrammingADODotNET/OrderProcessingWS/", _

Description:= _
"Provides access to the order details of customers")>

Public Class OrderProcessingWS
Inherits System.Web.Services.WebService

#Region " Web Services Designer Generated Code "
Private SQLConnectionString As String

Public Sub New()
MyBase.New()

'This call is required by the Web Services
'Designer.
InitializeComponent()

'Initialize connection string based on AppSettings
'defined in web.config
SQLConnectionString = _
ConfigurationSettings.AppSettings
("SQLConnectionString")

End Sub
...

To test that the application setting is working, create a

method that will return the connection string. Here is an

example of one:

<WebMethod(_
MessageName:="ConnectionString" _

)> _
Public Function ConnectionString() As String

ConnectionString = SQLConnectionString
End Function

Practical ADO .NET Programming (Part One) 183

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Once your application is complete, you can delete this

function, or you can set it to private and remove the

<WebMethod> attribute.

For easier manageability and access, create regions for

the different methods that you are going to use, as shown

below:

#Region " GetOrders Code Section "

#End Region

#Region " GetOrderDetails Code Section "

#End Region

#Region " GetFullOrders Code Section "

#End Region

We are now ready to start coding our first method. Let’s

start with the GetOrders methods.

GetOrders Methods

Put the GetOrders methods in the GetOrders Code Sec-

tion region. The source code for GetOrders_By_Cus-

tomer is available on the companion CD.

Let’s go through the different sections of the code for

GetOrders. The first step is to declare the function. The

function is declared with the <WebMethod> attribute in

order to tell .NET to expose it as a web method of the

Web Service. Because we are going to use polymorphism

to declare additional GetOrders() methods, we must

explicitly declare the name that the method will be

exposed as. For this, we use the “MessageName:=”

property of the <WebMethod>:

184 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

<WebMethod(_
MessageName:="GetOrders_By_Customer" _
)> _
Public Function GetOrders(_

ByVal CustomerID As String _
) As DataSet

'***************************************'
'* Return a summary orders *'
'* (order header) for the *'
'* given customer *'
'***************************************'

Notice that after the creation of the function, I have also

written some header comments that describe what the

function will do. This is a good habit to get into and,

though tedious at first, will help you and your colleagues

later when it comes to maintenance.

We then declare the DataSet, the SQL connection object,

and the query string that we will use:

'Declare dataset to store results
Dim OrderDetailsDS As New DataSet()
OrderDetailsDS.DataSetName = "OrderDetailsDS"

'Declare SqlConnection object for connection to database
'Use the Global Private string initialized in
'MyBase.New()
Dim objConn As New SqlConnection(SQLConnectionString)

'Declare the select query string to be
'used to select the data.
'including parameters in T-SQL format and for
'optimization
'tell the database engine not to issue locks
Dim SelectQuerySTR As String = _

"SELECT * " & _
"FROM Orders WITH (NOLOCK)" & _
"WHERE CustomerID = @CustomerID"

Since we are using DataSet to hold our data from the

SQL Server, it is easier to use a SqlDataAdapter to form

the bridge between the DataSet and SQL Server. Define

the adapter and create an SqlCommand object in the

Practical ADO .NET Programming (Part One) 185

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

adapter using the query string and the connection that

we declared earlier.

'Declare the DataAdapter that will be
'used to populate the DataSet.
Dim OrderDataAdapter As New SqlDataAdapter()

'Define the selectCommand for the DataAdapter
OrderDataAdapter.SelectCommand = _
New SqlCommand(SelectQuerySTR, objConn)

In the query string, notice that we use a T-SQL parame-

ter, @CustomerID. The SQLCommand object needs to

know what value to substitute for this parameter before

sending the query to the database engine. This is done

by adding a parameter to the SqlCommand.

'Define the parameter used in the SqlCommand
'and also set its value.
OrderDataAdapter.SelectCommand.Parameters.Add _
("@CustomerID", CustomerID)

We are now ready to connect to the database and popu-

late our DataSet using the fill method of the SqlData-

Adapter. Since there is a possibility of having a

connection error, we will also catch the error gracefully,

if any. Once done, we clean up and close the connection.

All that remains afterward is to return the DataSet.

'Catch possible errors
Try
'Open the Connection to data base
objConn.Open()

'Populate DataSet using the DataAdapter fill method.
OrderDataAdapter.Fill(OrderDetailsDS, "Orders")

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing command.",
Err)

Finally

186 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Close the Connection to data base
objConn.Close()

End Try

'Return the DataSet
GetOrders = OrderDetailsDS

Note: You do not have to worry about converting
the DataSet to XML for communication over the
Internet. This is done transparently by the .NET
Framework.

The rest of the GetOrders methods should follow a simi-

lar pattern to the one we have just seen. The main differ-

ence is the query string and the parameters. For

GetOrders_By_Date, we have:

'Declare the select query string to
'be used to select the data.
'including parameters in T-SQL format and for
'optimization
'tell the database engine not to issue locks
Dim SelectQuerySTR As String = _

"SELECT * " & _
"FROM Orders WITH (NOLOCK)" & _
"WHERE OrderDate >= @FromDate and OrderDate <=
@ToDate"

'(Code omitted for clarity)

'Define the parameter used in the SqlCommand
'and also set its value.
OrderDataAdapter.SelectCommand.Parameters.Add _
("@FromDate", FromDate)

OrderDataAdapter.SelectCommand.Parameters.Add _
("@ToDate", ToDate)

For GetOrders_By_Customer_Date, we have:

'Declare the select query string
'to be used to select the data.
'including parameters in T-SQL format and for
'optimization
'tell the database engine not to issue locks

Practical ADO .NET Programming (Part One) 187

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dim SelectQuerySTR As String = _
"SELECT * " & _
"FROM Orders WITH (NOLOCK)" & _
"WHERE CustomerID = @CustomerID AND " & _
"OrderDate >= @FromDate AND " & _
"OrderDate <= @ToDate"

'(Code omitted for clarity)

'Define the parameters used in the SqlCommand
'and also set its value.
OrderDataAdapter.SelectCommand.Parameters.Add _
("@CustomerID", CustomerID)

OrderDataAdapter.SelectCommand.Parameters.Add _
("@FromDate", FromDate)

OrderDataAdapter.SelectCommand.Parameters.Add _
("@ToDate", ToDate)

The full source code for the other GetOrders methods is

available on the companion CD.

To test the code, you can choose Start from the Debug

menu or press F5. A web page should start listing all the

available web methods for the Web Service. See Figure

6-4.

188 Chapter 6

Figure 6-4: Web page generated by IIS for the OrderPro-
cessingWS Web Service

TEAM LinG - Live, Informative, Non-cost and Genuine!

Choose any of the hyperlinks to see more information

about the web methods. This will take you to another

page, which will allow you to test the method. See Figure

6-5.

Note: You can only test methods that support
HTTP get. That means, if you pass objects like
DataSet as parameters you will not be able to test
the method using IIS auto-generated test page. In
such a case, you will have to write your own test
methods.

Practical ADO .NET Programming (Part One) 189

P
a
rt

II

Figure 6-5: Test page for GetOrders_By_Customer

TEAM LinG - Live, Informative, Non-cost and Genuine!

Enter some test data in the parameter and click the

Invoke button to run the test. A new page is opened that

shows the result in XML format of running the method

with the given data. The resulting XML is shown here:

<?xml version="1.0" encoding="utf-8" ?>
- <DataSet xmlns="http://ProgrammingADODotNET/

OrderProcessingWS/">
- <xs:schema id="OrdersDS" xmlns=""

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

- <xs:element name="OrdersDS" msdata:IsDataSet="true"
msdata:Locale="en-GB">

- <xs:complexType>
- <xs:choice maxOccurs="unbounded">
- <xs:element name="Orders">
- <xs:complexType>
- <xs:sequence>
<xs:element name="OrderID" type="xs:int"
minOccurs="0" />

<xs:element name="CustomerID" type="xs:string"
minOccurs="0" />

<xs:element name="EmployeeID" type="xs:int"
minOccurs="0" />

<xs:element name="OrderDate" type="xs:dateTime"
minOccurs="0" />

<xs:element name="RequiredDate" type="xs:dateTime"
minOccurs="0" />

<xs:element name="ShippedDate" type="xs:dateTime"
minOccurs="0" />

<xs:element name="ShipVia" type="xs:int"
minOccurs="0" />

<xs:element name="Freight" type="xs:decimal"
minOccurs="0" />

<xs:element name="ShipName" type="xs:string"
minOccurs="0" />

<xs:element name="ShipAddress" type="xs:string"
minOccurs="0" />

<xs:element name="ShipCity" type="xs:string"
minOccurs="0" />

<xs:element name="ShipRegion" type="xs:string"
minOccurs="0" />

<xs:element name="ShipPostalCode" type="xs:string"
minOccurs="0" />

190 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

<xs:element name="ShipCountry" type="xs:string"
minOccurs="0" />

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

- <diffgr:diffgram xmlns:msdata=
"urn:schemas-microsoft-com:xml-msdata"
xmlns:diffgr="urn:schemas-microsoft-com:
xml-diffgram-v1">

- <OrdersDS xmlns="">
- <Orders diffgr:id="Orders1" msdata:rowOrder="0">
<OrderID>10248</OrderID>
<CustomerID>VINET</CustomerID>
<EmployeeID>5</EmployeeID>
<OrderDate>1996-07-04T00:00:00.0000000+04:00</OrderDate>
<RequiredDate>1996-08-01T00:00:00.0000000+04:00</
RequiredDate>
<ShippedDate>1996-07-16T00:00:00.0000000+04:00</
ShippedDate>
<ShipVia>3</ShipVia>
<Freight>32.38</Freight>
<ShipName>Vins et alcools Chevalier</ShipName>
<ShipAddress>59 rue de l'Abbaye</ShipAddress>
<ShipCity>Reims</ShipCity>
<ShipPostalCode>51100</ShipPostalCode>
<ShipCountry>France</ShipCountry>
</Orders>

- <Orders diffgr:id="Orders2" msdata:rowOrder="1">
<OrderID>10274</OrderID>
<CustomerID>VINET</CustomerID>
<EmployeeID>6</EmployeeID>
<OrderDate>1996-08-06T00:00:00.0000000+04:00</OrderDate>
<RequiredDate>1996-09-03T00:00:00.0000000+04:00</
RequiredDate>
<ShippedDate>1996-08-16T00:00:00.0000000+04:00</
ShippedDate>
<ShipVia>1</ShipVia>
<Freight>6.01</Freight>
<ShipName>Vins et alcools Chevalier</ShipName>
<ShipAddress>59 rue de l'Abbaye</ShipAddress>
<ShipCity>Reims</ShipCity>

Practical ADO .NET Programming (Part One) 191

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

<ShipPostalCode>51100</ShipPostalCode>
<ShipCountry>France</ShipCountry>
</Orders>

- <Orders diffgr:id="Orders3" msdata:rowOrder="2">
<OrderID>10295</OrderID>
<CustomerID>VINET</CustomerID>
<EmployeeID>2</EmployeeID>
<OrderDate>1996-09-02T00:00:00.0000000+04:00</OrderDate>
<RequiredDate>1996-09-30T00:00:00.0000000+04:00</
RequiredDate>
<ShippedDate>1996-09-10T00:00:00.0000000+04:00</
ShippedDate>
<ShipVia>2</ShipVia>
<Freight>1.15</Freight>
<ShipName>Vins et alcools Chevalier</ShipName>
<ShipAddress>59 rue de l'Abbaye</ShipAddress>
<ShipCity>Reims</ShipCity>
<ShipPostalCode>51100</ShipPostalCode>
<ShipCountry>France</ShipCountry>
</Orders>

- <Orders diffgr:id="Orders4" msdata:rowOrder="3">
<OrderID>10737</OrderID>
<CustomerID>VINET</CustomerID>
<EmployeeID>2</EmployeeID>
<OrderDate>1997-11-11T00:00:00.0000000+04:00</OrderDate>
<RequiredDate>1997-12-09T00:00:00.0000000+04:00</
RequiredDate>
<ShippedDate>1997-11-18T00:00:00.0000000+04:00</
ShippedDate>
<ShipVia>2</ShipVia>
<Freight>7.79</Freight>
<ShipName>Vins et alcools Chevalier</ShipName>
<ShipAddress>59 rue de l'Abbaye</ShipAddress>
<ShipCity>Reims</ShipCity>
<ShipPostalCode>51100</ShipPostalCode>
<ShipCountry>France</ShipCountry>
</Orders>

- <Orders diffgr:id="Orders5" msdata:rowOrder="4">
<OrderID>10739</OrderID>
<CustomerID>VINET</CustomerID>
<EmployeeID>3</EmployeeID>
<OrderDate>1997-11-12T00:00:00.0000000+04:00</OrderDate>
<RequiredDate>1997-12-10T00:00:00.0000000+04:00</
RequiredDate>

192 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

<ShippedDate>1997-11-17T00:00:00.0000000+04:00</
ShippedDate>
<ShipVia>3</ShipVia>
<Freight>11.08</Freight>
<ShipName>Vins et alcools Chevalier</ShipName>
<ShipAddress>59 rue de l'Abbaye</ShipAddress>
<ShipCity>Reims</ShipCity>
<ShipPostalCode>51100</ShipPostalCode>
<ShipCountry>France</ShipCountry>
</Orders>
</OrdersDS>
</diffgr:diffgram>
</DataSet>

The result shows both the XML Schema and the XML

data.

GetOrderDetails Methods

The GetOrderDetails methods follow the same principle

as the GetOrders methods. Again, the only difference is

the query and parameter, so I will not go into detail about

each section of the code.

#Region " GetOrderDetails Code Section "

<WebMethod()> _
Public Function GetOrderDetails(_

ByVal OrderID As Integer _
) As DataSet

'***************************************'
'* Return the item entries *'
'* for the given order *'
'***************************************'

'Declare dataset to store results
Dim OrderEntriesDS As New DataSet()
OrderEntriesDS.DataSetName = "OrderEntriesDS"

'Declare SqlConnection object for connection to
'database
'Use the Global Private string initialized in
'MyBase.New()

Practical ADO .NET Programming (Part One) 193

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dim objConn As New SqlConnection
(SQLConnectionString)

'Define the select query string to be used
'to select the data.
'including parameters in T-SQL format and for
'optimization
'tell the database engine not to issue locks
Dim SelectQuerySTR As String = _

"SELECT * " & _
"FROM [Order Details] WITH (NOLOCK)" & _
"WHERE OrderID = @OrderID"

'Declare the DataAdapter that will be
'used to populate the DataSet.
Dim OrderDataAdapter As New SqlDataAdapter()

'Define the selectCommand for the DataAdapter
OrderDataAdapter.SelectCommand = _
New SqlCommand(SelectQuerySTR, objConn)

'Define the parameter used in the SqlCommand
'and also set its value.
OrderDataAdapter.SelectCommand.Parameters.Add _
("@OrderID", OrderID)

'Catch possible errors
Try

'Open the Connection to database
objConn.Open()

'Populate the DataSet using the DataAdapter
'fill method.
OrderDataAdapter.Fill(OrderEntriesDS, "Orders
Details")

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing
command.", Err)

Finally

'Close the Connection to database
objConn.Close()

194 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

End Try

'Return the DataSet
GetOrderDetails = OrderEntriesDS

End Function

#End Region

Note that we only have one GetOrderDetails method,

and we want to use the same name for the web method.

Therefore, we do not have to specify MessageName:="

GetOrderDetails " for the <WebMethod> attribute.

GetFullOrders Methods

So far, we have used the DataSet as a transporter for a

single table. We have not yet used multiple tables or

added relations to the DataSet. With GetFullOrders, we

need to get a snapshot of the database into the DataSet.

This means that we will also have to allow for relation-

ships between the two tables. Figure 6-6 shows the

tables, columns, and relationships that we will need in

the DataSet.

Practical ADO .NET Programming (Part One) 195

P
a
rt

II

Figure 6-6: Tables, columns, and relationships for GetFullOrders
methods

TEAM LinG - Live, Informative, Non-cost and Genuine!

To help with the coding, it would be useful to create a

typed DataSet. This will keep us from having to write

code to create the proper schema. To do this, add a

DataSet to the project and call it “OrdersDs.xsd.” The

design should replicate what is shown in Figure 6-7.

The OrdersDs.xsd file is provided on the companion CD.

You can use it instead of having to create your own. Once

you have created the file, ensure that the Schema menu

option Generate DataSet is selected; if not, select it. This

will generate the DataSet for you from the XSD file,

which, if you remember, is an XML Schema file. How-

ever, if you want to manually create the schema yourself,

it is shown here:

196 Chapter 6

Figure 6-7: Design view of OrdersDs.xsd

TEAM LinG - Live, Informative, Non-cost and Genuine!

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Dataset1" targetNamespace=
"http://ProgrammingADODotNET/OrderProcessingWS/
OrdersDS.xsd"
elementFormDefault="qualified"
attributeFormDefault="qualified"

xmlns="http://ProgrammingADODotNET/OrderProcessingWS/
OrdersDS.xsd"

xmlns:mstns=
"http://ProgrammingADODotNET/OrderProcessingWS/
OrdersDS.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xs:element name="OrdersDS" msdata:IsDataSet="true">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Orders">
<xs:complexType>
<xs:sequence>
<xs:element name="OrderID" type="xs:int"
minOccurs="0" />
<xs:element name="CustomerID" type="xs:string"
minOccurs="0" />
<xs:element name="EmployeeID" type="xs:int"
minOccurs="0" />
<xs:element name="OrderDate" type="xs:dateTime"
minOccurs="0" />
<xs:element name="RequiredDate"
type="xs:dateTime" minOccurs="0" />
<xs:element name="ShippedDate"
type="xs:dateTime" minOccurs="0" />
<xs:element name="ShipVia" type="xs:int"
minOccurs="0" />
<xs:element name="Freight" type="xs:decimal"
minOccurs="0" />
<xs:element name="ShipName" type="xs:string"
minOccurs="0" />
<xs:element name="ShipAddress"
type="xs:string" minOccurs="0" />
<xs:element name="ShipCity"
type="xs:string" minOccurs="0" />
<xs:element name="ShipRegion"
type="xs:string" minOccurs="0" />
<xs:element name="ShipPostalCode"
type="xs:string" minOccurs="0" />

Practical ADO .NET Programming (Part One) 197

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

<xs:element name="ShipCountry"
type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Order_x0020_Details">
<xs:complexType>
<xs:sequence>
<xs:element name="OrderID" type="xs:int"
minOccurs="0" />
<xs:element name="ProductID" type="xs:int"
minOccurs="0" />
<xs:element name="UnitPrice"
type="xs:decimal" minOccurs="0" />
<xs:element name="Quantity" type="xs:short"
minOccurs="0" />
<xs:element name="Discount" type="xs:float"
minOccurs="0" />

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Customers">
<xs:complexType>
<xs:sequence>
<xs:element name="CustomerID"
type="xs:string" minOccurs="0" />
<xs:element name="CompanyName"
type="xs:string" minOccurs="0" />
<xs:element name="ContactName"
type="xs:string" minOccurs="0" />
<xs:element name="ContactTitle"
type="xs:string" minOccurs="0" />
<xs:element name="Address" type="xs:string"
minOccurs="0" />

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Employees">
<xs:complexType>
<xs:sequence>
<xs:element name="EmployeeID" type="xs:int"
minOccurs="0" />
<xs:element name="Title" type="xs:string"
minOccurs="0" />
<xs:element name="FirstName" type="xs:string"

198 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

minOccurs="0" />
<xs:element name="LastName" type="xs:string"
minOccurs="0" />

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Products">
<xs:complexType>
<xs:sequence>
<xs:element name="ProductID" type="xs:int"
minOccurs="0" />
<xs:element name="ProductName"
type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
<xs:key name="OrdersPK" msdata:PrimaryKey="true">
<xs:selector xpath=".//mstns:Orders" />
<xs:field xpath="mstns:OrderID" />
</xs:key>
<xs:key name="EmployeesPK" msdata:PrimaryKey="true">
<xs:selector xpath=".//mstns:Employees" />
<xs:field xpath="mstns:EmployeeID" />
</xs:key>
<xs:key name="OrdersDetailsPK" msdata:PrimaryKey="true">
<xs:selector xpath=".//mstns:Order_x0020_Details" />
<xs:field xpath="mstns:OrderID" />
<xs:field xpath="mstns:ProductID" />
</xs:key>
<xs:key name="CustomersPK" msdata:PrimaryKey="true">
<xs:selector xpath=".//mstns:Customers" />
<xs:field xpath="mstns:CustomerID" />
</xs:key>
<xs:key name="ProductsPK" msdata:PrimaryKey="true">
<xs:selector xpath=".//mstns:Products" />
<xs:field xpath="mstns:ProductID" />
</xs:key>
<xs:keyref name="ProductsOrder_x005F_x0020_Details"
refer="ProductsPK" msdata:ConstraintOnly="true">
<xs:selector xpath=".//mstns:Order_x0020_Details" />
<xs:field xpath="mstns:ProductID" />
</xs:keyref>
<xs:keyref name="OrdersOrder_x005F_x0020_Details"

Practical ADO .NET Programming (Part One) 199

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

refer="OrdersPK" msdata:ConstraintOnly="true"
msdata:DeleteRule="Cascade"
msdata:UpdateRule="Cascade">
<xs:selector xpath=".//mstns:Order_x0020_Details" />
<xs:field xpath="mstns:OrderID" />
</xs:keyref>
<xs:keyref name="CustomersOrders"
refer="CustomersPK" msdata:ConstraintOnly="true">
<xs:selector xpath=".//mstns:Orders" />
<xs:field xpath="mstns:CustomerID" />
</xs:keyref>
<xs:keyref name="EmployeesOrders"
refer="EmployeesPK" msdata:ConstraintOnly="true">
<xs:selector xpath=".//mstns:Orders" />
<xs:field xpath="mstns:EmployeeID" />
</xs:keyref>
</xs:element>
</xs:schema>

The DataSet based on OrderDS will act as a snapshot of

tables and records in the database. As you can see in Fig-

ure 6-7, the tables that we need to populate in the

DataSet are Customers, Employees, Products, Orders,

and Order Details. OrderDS also defines a few relation-

ships, as shown here:

Table and Columns Relationship

Customers Primary key is CustomerID

Employees Primary key is EmployeeID

Orders Primary key is OrdersID

Orders.CustomerID Foreign key references
Customers.CustomerID

Orders.EmployeeID Foreign key references
Employees.EmployeeID

Products Primary key is ProductID

Order Details Primary key is a compound key
of OrderID and ProductID

Order Details.ProductID Foreign key references
Products.ProductID

200 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

To maintain the relationship, the DataSet must be popu-

lated in a certain order:

� The Customers and Employees tables must be popu-

lated before the Orders table.

� The Orders table must be populated before the Order

Details table.

� The Products table must be populated before the

Order Details table.

With the above in mind, let’s go through the different

sections of the GetFullOrders code.

GetFullOrders Code

First, let’s look at the simplest of the GetFullOrders

methods, the GetFullOrders using OrderID. First,

declare the method and required variables:

<WebMethod(MessageName:="GetFullOrders")> _
Public Function GetFullOrders(ByVal OrderID As _
Integer)
As DataSet

'***************************************'
'* Return a snapshot of tables *'
'* related to the given order *'
'***************************************'

'Declare dataset to hold tables and relations
Dim OrderDS As New OrdersDS()

'Declare SqlConnection object for connection to
'database
Dim objConn As New SqlConnection
(SQLConnectionString)

'Declare the DataAdapter that will be used
'to populate the DataTables.
Dim OrderDataAdapter As New SqlDataAdapter()

Practical ADO .NET Programming (Part One) 201

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Notice that OrderDS is declared as type OrdersDS,

which is our typed DataSet. We need to define query

strings for each of the tables we are going to populate:

'Declare the select query string to be used
'to select the data from Orders table
'including parameters in T-SQL format and for
'optimization
'tell the database engine not to issue locks
Dim SelectOrderSTR As String = _
"SELECT OrderID, CustomerID, " & _
"EmployeeID, OrderDate, " & _
"RequiredDate, ShippedDate, " & _
"ShipVia, Freight, " & _
"ShipName, ShipAddress, " & _
"ShipCity, ShipRegion, " & _
"ShipPostalCode, ShipCountry " & _
"FROM Orders with (NOLOCK) " & _
"WHERE Orders.OrderID = @OrderID"

'Declare the select query string to be used
'for Order details
Dim SelectOrderDetailsSTR As String = _
"SELECT [Order Details].OrderID, " & _
"[Order Details].ProductID, " & _
"[Order Details].UnitPrice, " & _
"[Order Details].Quantity, " & _
"[Order Details].Discount " & _
"FROM [Order Details] WITH (NOLOCK) " & _
"WHERE [Order Details].OrderID = @OrderID"

'Declare the select query string to be used
'for Products. Note that we do not retrieve
'all products as this will make the dataset
'load unused data
Dim SelectProductsSTR As String = _
"SELECT DISTINCT Products.ProductID, " & _
"Products.ProductName " & _
"FROM [Order Details] JOIN " & _
"Products ON " & _
"[Order Details].ProductID = " & _
"Products.ProductID " & _
"WHERE [Order Details].OrderID = @OrderID"

202 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Declare the select query string to be used
'for Employees.
Dim SelectEmployeesSTR As String = _
"SELECT DISTINCT Employees.EmployeeID, " & _
"Employees.Title, Employees.FirstName, " & _
"Employees.LastName " & _
"FROM Orders JOIN Employees ON " & _
"Orders.EmployeeID = Employees.EmployeeID " & _
"WHERE Orders.OrderID = @OrderID"

'Declare the select query string to be used
'for Customers.
Dim SelectCustomersSTR As String = _
"SELECT DISTINCT Customers.CustomerID, " & _
"Customers.CompanyName, Customers.ContactName, " & _
"Customers.ContactTitle, Customers.Address " & _
"FROM Orders JOIN Customers ON " & _
"Orders.CustomerID = Customers.CustomerID " & _
"WHERE Orders.OrderID = @OrderID"

The query string makes sure that, as far as possible, only

the required records are retrieved. For example, only the

products found on that particular order are retrieved.

This helps to reduce the size of the DataSet that will be

returned to the clients. In a full-blown system, the Prod-

ucts table could be returned by a separate method. The

client could keep a read-only copy of the list updated

periodically or on demand. You will also notice that not

all columns in the supporting table (Customers,

Employees, and Products) are returned. Again, this is

again to reduce the size of the DataSet.

Once we have defined the query string, all that is left is

to fill the respective tables:

'Define the selectCommand for the DataAdapter
OrderDataAdapter.SelectCommand = New SqlCommand()
OrderDataAdapter.SelectCommand.Connection =
objConn

'Define the parameter used in the SqlCommand
'and also set its value.
OrderDataAdapter.SelectCommand.Parameters.Add _

Practical ADO .NET Programming (Part One) 203

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

("@OrderID", OrderID)

Try
'Open the Connection to database
objConn.Open()

OrderDataAdapter.SelectCommand.CommandText = _
SelectProductsSTR

'Populate the DataSet using the DataAdapter
'fill method.
OrderDataAdapter.Fill(OrderDS.Products)

OrderDataAdapter.SelectCommand.CommandText = _
SelectEmployeesSTR

'Populate the DataSet using the DataAdapter
'fill method.
OrderDataAdapter.Fill(OrderDS.Employees)

OrderDataAdapter.SelectCommand.CommandText = _
SelectCustomersSTR

'Populate the DataSet using the DataAdapter
'fill method.
OrderDataAdapter.Fill(OrderDS.Customers)

OrderDataAdapter.SelectCommand.CommandText = _
SelectOrderSTR

'Populate the DataSet using the DataAdapter
'fill method.
OrderDataAdapter.Fill(OrderDS.Orders)

OrderDataAdapter.SelectCommand.CommandText = _
SelectOrderDetailsSTR
'Populate the DataSet using the DataAdapter
'fill method.
OrderDataAdapter.Fill(OrderDS.Order_Details)

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing
command.", Err)

Finally

'Close the Connection to database
objConn.Close()

204 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

End Try

'Return the dataset
GetFullOrders = OrderDS

End Function

We only need to use one DataAdapter. The key to this

technique is to change the CommandText property of the

SqlCommand object for each table that we retrieve. If

you look carefully, you will notice also that we are refer-

encing the tables in the DataSet using the dot notation.

For example, we use OrderDS.Order_Details to refer to

the Order Details table. Since spaces are not allowed in

the names of objects in VB .NET syntax, the space in the

table name is replaced by an underscore, “_”. Therefore,

“Order Details” becomes “Order_Details”. As you would

expect, the parameters used in the script must also be

added to the SqlCommand object. Since I have chosen

the same name for that parameter in my script, I only

have to define it once.

GetFullOrders_By_Customer Code

For GetFullOrders_By_Customer, the only difference is

the query string and parameter:

'Declare the select query string to be used
'to select the data from Orders table
'including parameters in T-SQL format and for
'optimization
'tell the database engine not to issue locks
Dim SelectOrderSTR As String = _
"SELECT OrderID, CustomerID, " & _
"EmployeeID, OrderDate, " & _
"RequiredDate, ShippedDate, " & _
"ShipVia, Freight, " & _
"ShipName, ShipAddress, " & _
"ShipCity, ShipRegion, " & _
"ShipPostalCode, ShipCountry " & _

Practical ADO .NET Programming (Part One) 205

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

"FROM Orders with (NOLOCK) " & _
"WHERE Orders.CustomerID = @CustomerID"

'Declare the select query string to be used
'for Order details
Dim SelectOrderDetailsSTR As String = _
"SELECT [Order Details].OrderID, " & _
"[Order Details].ProductID, " & _
"[Order Details].UnitPrice, " & _
"[Order Details].Quantity, " & _
"[Order Details].Discount " & _
"FROM Orders JOIN [Order Details] " & _
"ON Orders.OrderID = [Order Details].OrderID " & _
"WHERE Orders.CustomerID = @CustomerID"

'Declare the select query string to be used
'for Products. Note that we do not retrieve
'all products as this will make the dataset
'load unused data
Dim SelectProductsSTR As String = _
"SELECT DISTINCT Products.ProductID, " & _
"Products.ProductName " & _
"FROM Orders JOIN [Order Details] " & _
"ON Orders.OrderID = [Order Details].OrderID " & _
"JOIN Products ON " & _
"[Order Details].ProductID = " & _
"Products.ProductID " & _
"WHERE Orders.CustomerID = @CustomerID"

'Declare the select query string to be used
'for Employees.
Dim SelectEmployeesSTR As String = _
"SELECT DISTINCT Employees.EmployeeID, " & _
"Employees.Title, Employees.FirstName, " & _
"Employees.LastName " & _
"FROM Orders JOIN Employees ON " & _
"Orders.EmployeeID = Employees.EmployeeID " & _
"WHERE Orders.CustomerID = @CustomerID"

'Declare the select query string to be used
'for Customers.
Dim SelectCustomersSTR As String = _
"SELECT Customers.CustomerID, " & _

"Customers.CompanyName, Customers.ContactName, " & _

206 Chapter 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

"Customers.ContactTitle, Customers.Address " & _
"FROM Customers " & _
"WHERE Customers.CustomerID = @CustomerID"

The SELECT query used to filter the rows in this case is

slightly more complicated because we always have to

join with the Orders table to be able to get the

CustomerID. This is particularly apparent in the Prod-

ucts table where the join is two levels deep. In this case,

the Products table is joined to the Order Details table via

the ProductID column. In turn, the Order Details table is

joined to the Orders table via the OrderID column. Order

is then restricted using the CustomerID column. Since

the same products may be on different orders for the

same customer, we must also use the DISTINCT quali-

fier in the query so that we do not get duplicate products.

Summary

In this chapter, we looked at how to retrieve data from

the database to the DataSet. We went through the steps

required to set up the case study, including setting up

Microsoft Internet Information Server (IIS) to use Web

Service. We also saw how to use and create a typed

DataSet and how to retrieve data from multiple tables

into one DataSet.

In Chapter 7, we will continue with the Web Service and

look at the methods and techniques required to update

the database via the Web Service and DataSet.

Practical ADO .NET Programming (Part One) 207

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 7

Practical ADO .NET
Programming
(Part Two)

In This Chapter

In Chapter 6 we concentrated on the data retrieval

aspect of the Web Service. In this chapter, we will expand

the Web Service to include data update methods.

We will look at how to set up the DataSet to avoid

concurrency issues and how to update data via stored

procedures instead of scripts.

Data Update Methods

Updating data via the DataSet can be tricky. In a previous

version of ADO, the update was done row by row manu-

ally by looping through each row and running the rele-

vant query. You can still do this with DataSet. You can

reference each row of a DataTable in a DataSet, loop

through each one, and run the appropriate query. How-

ever, the update method of the DataAdapter can take care

of all the required looping for you.

There is still one problem with the update method. It

does all updates, including deletes, inserts, and, obvi-

ously, updates, in the order that it retrieves the rows

from the DataTable. It checks the RowState property and

209

TEAM LinG - Live, Informative, Non-cost and Genuine!

does the required INSERT, DELETE, or UPDATE com-

mand. If you require updates to be done in a particular

order, you must filter the DataSet. In the case study, we

need to control the order of the updates for the Order

Details and Orders tables. You need to create separate

update methods to take care of the deletes, updates, and

inserts for both tables.

The Update Functions

Update Methods Description

UpdateOrderDetails Parameter:
ByRef DataTable

Updates the Order Details table

InsertOrderDetails Parameter:
ByRef DataTable

Inserts new rows in the Order
Details table

DeleteOrderDetails Parameter:
ByRef DataTable

Deletes rows in the Order Details
table

UpdateOrders Parameter:
ByRef DataTable

Updates the Orders table

InsertOrders Parameter:
ByRef DataTable

Inserts new rows in the Orders
table

DeleteOrders Parameter:
ByRef DataTable

Deletes rows in the Orders table

The update functions all follow a similar pattern—they

initialize variables, define the query string, define param-

eters, and finally execute the query string, including

trapping any errors that may arise.

210 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Protected Order Details Update Methods

Let’s look at the simpler update methods: the update

methods for the Order Details table. They are simpler

because the Order Details table is a child table and does

not have dependent tables.

The DeleteOrderDetails Method

The DeleteOrderDetails method is the simplest of the

three because it requires fewer parameters. In fact, you

only need to supply parameters for the primary key col-

umns, OrderID and ProductID. As is standard, the first

step is to declare the method and the required variables.

Protected Function DeleteOrderDetails _
(ByRef OrderDetailsTB As DataTable)

'Declare SqlConnection object for connection to database
'Use the Global Private string initialized in
'MyBase.New()
Dim objConn As New SqlConnection(SQLConnectionString)

'Declare the DataAdapter that will be
'used to populate the DataSet.
Dim OrderDataAdapter As New SqlDataAdapter()

OrderDataAdapter.DeleteCommand = New SqlCommand()

'Declare the DataAdapter that will be
'used to populate the DataSet.
Dim workParm As SqlParameter

'Declare the query string
'that will perform the update
Dim DeleteOrderDetailsSTR As String = _
"DELETE FROM [Order Details] " & _
" WHERE " & _
"OrderID = @OrderID AND " & _
"ProductID = @ProductID "

Notice that we pass along a DataTable instead of a

DataSet as a parameter. This is possible because the

method will not be exposed as a web method.

Practical ADO .NET Programming (Part Two) 211

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Furthermore, these update methods will only be used by

other methods in the class or by descendants of the

class, so we declare it as protected. The initialization also

includes the query string required for the delete. Make a

note of the parameters used because in the next section,

we need to define these parameters.

'Create new parameter and reference it
'Set the source and version
workParm = OrderDataAdapter.DeleteCommand. _
Parameters.Add("@OrderID", SqlDbType.Int)

workParm.SourceColumn = "OrderID"
workParm.SourceVersion = DataRowVersion.Original

workParm = OrderDataAdapter.DeleteCommand. _
Parameters.Add("@ProductID", SqlDbType.Int)

workParm.SourceColumn = "ProductID"
workParm.SourceVersion = DataRowVersion.Original

We use the reference variable workParm to refer to each

parameter that we create to reduce the amount of code

we have to type. When a parameter is created, we also

define the data type that is used in the database. In the

database, both OrderID and ProductID are integers rep-

resented in the code by the enumerated data type

SqlDbType.Int. We define the source of the parameter as

a column in the DataTable. Next, we define which ver-

sion of the row to use. Since we are going to delete the

row, we need to make sure that we use the original ver-

sion of the key columns so that we refer to the right row.

If we use the default version, which is DataRowVer-

sion.Current, we might end up deleting the wrong

records. This can happen if the columns were changed

and deleted in the DataSet.

After we have done all the required settings, we can then

go ahead and do the update.

212 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Set command test and connection
OrderDataAdapter.DeleteCommand. _
CommandText = DeleteOrderDetailsSTR

OrderDataAdapter.DeleteCommand.Connection = objConn

Try
'Open the Connection to database
objConn.Open()

'Next process updates.
DeleteOrderDetails = OrderDataAdapter. _
Update(OrderDetailsTB.Select _
(Nothing, Nothing, DataViewRowState.Deleted))

Catch ConcurncyErr As DBConcurrencyException
Throw ConcurncyErr

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing command.",
Err)

Finally

'Close the Connection to database
objConn.Close()

End Try

End Function

This part of the code is more or less standard. All we do

is add the query string to the DeleteCommand.com-

mandtext property, set the connection object to use, and

do the update. We filter rows in the DataTable only to

pass the deleted rows using the select method of the

DataTable and the DataViewRowState.Deleted row state

filter. This will ensure that only deleted rows are passed

to the update method of the DataAdpater, ensuring that

the update method does only deletes.

Practical ADO .NET Programming (Part Two) 213

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: We catch the concurrency error separately
from other errors. Concurrency errors occur if the
query did not affect any row. Because of the discon-
nected nature of the DataSet and Web Services, it is
possible that the rows in the database, in this case,
have been deleted by another user after the rows
were last retrieved by the current user. I will discuss
concurrency in more detail later in this chapter.

The InsertOrderDetails Method

The InsertOrderDetails method follows the same pattern

as DeleteOrderDetails, but this time the query is slightly

more complicated.

Dim InsertOrderDetailsSTR As String = _
"INSERT INTO [Order Details]" & _
"(OrderID,ProductID,UnitPrice,Quantity,Discount) " & _
"SELECT @OrderID,@ProductID," & _
"@UnitPrice,@Quantity,@Discount " & _
"FROM Orders ,Products " & _
"where Orders.OrderID = @OrderID " & _
"AND Products.ProductID = @ProductID " & _
"AND @ProductID not in " & _
"(SELECT ProductID " & _
"from [Order Details] " & _
"where [Order Details].OrderID = @OrderID)"

The SQL INSERT command is used with a SELECT to

restrict the insert. The SELECT returns the list of insert

parameters only if the following conditions are true:

� An order with the given OrderID exists.

� A product with the given ProductID exists.

� The given ProductID is not already part of the Order

Details for the given OrderID.

These conditions are mainly for concurrency reasons, to

avoid inserts of products that have already been added to

the order since the order was last retrieved. It also pre-

vents addition if the order or the product no longer

214 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

exists. As for the parameter version, we now use current

versions for all parameters because we are dealing with

new rows.

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@OrderID", SqlDbType.Int)

workParm.SourceColumn = "OrderID"
workParm.SourceVersion = DataRowVersion.Current

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ProductID", SqlDbType.Int)

workParm.SourceColumn = "ProductID"
workParm.SourceVersion = DataRowVersion.Current

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@UnitPrice", SqlDbType.Money)

workParm.SourceColumn = "UnitPrice"
workParm.SourceVersion = DataRowVersion.Current

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@Quantity", SqlDbType.SmallInt)

workParm.SourceColumn = "Quantity"
workParm.SourceVersion = DataRowVersion.Current

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@Discount", SqlDbType.Real)

workParm.SourceColumn = "Discount"
workParm.SourceVersion = DataRowVersion.Current

You do not need to specify the SourceVersion as

DataRowVersion.Current since this is the default value,

but doing so helps in the clarity of the code and removes

ambiguity.

The update is similar to that of DeleteOrder, except this

time we filter for the inserted rows.

OrderDataAdapter.InsertCommand.CommandText =
InsertOrderDetailsSTR

OrderDataAdapter.InsertCommand.Connection = objConn

Try
'Open the Connection to database
objConn.Open()

Practical ADO .NET Programming (Part Two) 215

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Next process updates.
InsertOrderDetails = OrderDataAdapter.Update(_
OrderDetailsTB.Select(_
Nothing, Nothing, DataViewRowState.Added))

Catch ConcurncyErr As DBConcurrencyException
Throw ConcurncyErr

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing command.",
Err)

Finally

'Close the Connection to database
objConn.Close()

End Try

To get the new rows from the DataTable, we use Data-

ViewRowState.Added as the filter criteria.

The UpdateOrderDetails Method

The UpdateOrderDetails method is slightly more tricky

than the DeleteOrderDetails and the InsertOrderDetails

methods. First, UpdateOrderDetails is declared and vari-

ables are initialized.

Public Function UpdateOrderDetails _
(ByVal OrderDetailsTB As DataTable)
As Integer

'Declare SqlConnection object for connection to database
'Use the Global Private string initialized in
'MyBase.New()
Dim objConn As New SqlConnection(SQLConnectionString)

'Declare the DataAdapter that will be
'used to populate the DataSet.
Dim OrderDataAdapter As New SqlDataAdapter()

OrderDataAdapter.UpdateCommand = New SqlCommand()

216 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dim workParm As SqlParameter

Dim UpdateOrderDetailsSTR As String = _
"UPDATE [Order Details] " & _
"SET UnitPrice = @NewUnitPrice, " & _
" Quantity = @NewQuantity, " & _
" Discount = @NewDiscount " & _
" WHERE OrderID = @OrigOrderID AND" & _
" ProductID = @OrigProductID"

The query string is simple, but do make a note that only

the non-primary key columns are updated. The primary

key columns are used to qualify the update. The tricky

part is the next code section dealing with the

parameters.

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@OrigOrderID", SqlDbType.Int)

workParm.SourceColumn = "OrderID"
workParm.SourceVersion = DataRowVersion.Original

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@OrigProductID", SqlDbType.Int)

workParm.SourceColumn = "ProductID"
workParm.SourceVersion = DataRowVersion.Original

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@NewUnitPrice", SqlDbType.Money)

workParm.SourceColumn = "UnitPrice"
workParm.SourceVersion = DataRowVersion.Current

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@NewQuantity", SqlDbType.SmallInt)

workParm.SourceColumn = "Quantity"
workParm.SourceVersion = DataRowVersion.Current

workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@NewDiscount", SqlDbType.Real)

workParm.SourceColumn = "Discount"
workParm.SourceVersion = DataRowVersion.Current

For the parameter referring to the primary keys, you

must use the original version of the row. This ensures

that you do not update the wrong row and provides

Practical ADO .NET Programming (Part Two) 217

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

rudimentary concurrency error checks. In effect, we

have also made the primary keys read-only. As for the

rest of the parameters, use the current version so that

the update is applied. Afterward, all that remains is to do

the update, making sure that only changed rows are

passed to the update method

OrderDataAdapter.UpdateCommand.CommandText =
UpdateOrderDetailsSTR

OrderDataAdapter.UpdateCommand.Connection = objConn

Try
'Open the Connection to database
objConn.Open()

'Next process updates.
UpdateOrderDetails = OrderDataAdapter.Update _
(OrderDetailsTB.Select(_
Nothing, Nothing, DataViewRowState.
ModifiedCurrent))

Catch ConcurncyErr As DBConcurrencyException
Throw ConcurncyErr

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing command.",
Err)

Finally

'Close the Connection to database
objConn.Close()

End Try

218 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

Concurrency Issues

In the update functions, there is no advance concurrency

error check that checks if the rows have changed since

they were last retrieved. This is a common problem in

disconnected multiuser systems. To do this check, you

may need to check every column and row in the table

with the corresponding columns and rows in the

DataTable. This, though, is not the most efficient design.

The more common solution is to add a special column

that you can use for tracking row versions in each table.

This column, usually a datetime field or a timestamp, is

changed each time any column in the particular row is

modified. This can be done by the database engine

through the use of triggers.

Note: In Microsoft SQL Server 2000, the Trans-
act-SQL timestamp data type is not the same as the
timestamp data type defined in the SQL-92 stan-
dard. The SQL-92 timestamp data type is equivalent
to the Transact-SQL datetime data type. Future
releases of the SQL Server may modify the behavior
of the timestamp data type to comply with the
behavior defined in the SQL-92 standard. At that
time, the current timestamp data type will be
replaced with a rowversion data type.

The special concurrency check field is always retrieved

with any updateable records. When doing an update or

delete, the original value of the concurrency field is used

against that of the database, usually in the WHERE

clause. If the original does not match the database cur-

rent value, the update method will cause a concurrency

exception. The DataAdapter update method throws a

concurrency error if the update causes zero rows to be

affected.

Practical ADO .NET Programming (Part Two) 219

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Protected Orders Update Methods

Thus far, we have completed the update methods that we

will need to update the Order Details table. To be able to

modify an order, we must also add update methods to

modify the order header or, more accurately, the Orders

table.

The methods follow what now is a familiar pattern for the

update methods we have done so far. However, to show

you the power of the DataAdapter update method, we

will do the updates through stored procedures.

Note: For illustration purposes, I have chosen not
to update Order Details through stored procedures.
However, in a real-world project, the use of stored
procedures is advised over direct SQL query. This is
mainly for performance and security purposes. It
might also be a requirement imposed on you by the
database administrator.

Before we move on with the methods, we need to define

the stored procedure that the method will use. You can

apply the required SQL query to generate the stored pro-

cedure using the query analyzer tool that is included with

Microsoft SQL Server 2000. Make sure that you apply

the stored procedure to the Northwind database.

The sp_UpdateOrders Stored Procedure

The first part of the script is to check if the stored proce-

dure already exists. If it does, we drop the stored proce-

dure. This part of the script is useful, especially when

debugging and writing the scripts. It keeps us from hav-

ing to manually drop the stored procedure each time we

apply a new version.

220 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

-- =======================================
-- Script for sp_UpdateOrders
-- =======================================

/***/
/* Check if a version of the stored */
/* procedure already exist and if so drop it */
/***/

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = N'sp_UpdateOrders'
AND type = 'P')

DROP PROCEDURE sp_UpdateOrders
GO

Next, we create the procedure with all the required

parameters.

CREATE PROCEDURE sp_UpdateOrders
@OrderID integer,
@CustomerID nchar(5),
@EmployeeID integer,
@OrderDate datetime,
@RequiredDate datetime,
@ShippedDate datetime,
@ShipVia integer,
@Freight money,
@ShipName nvarchar(40),
@ShipAddress nvarchar(60),
@ShipCity nvarchar(15),
@ShipRegion nvarchar(15),
@ShipPostalCode nvarchar(10),
@ShipCountry nvarchar(15)

AS
BEGIN

Finally, we define the SQL scripts that we need to run to

do the required update.

Practical ADO .NET Programming (Part Two) 221

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

/***/
/* set up SQL to use transaction to allow */
/* rollback in case of error */
/***/

BEGIN TRANSACTION

/* Run script to update Orders table */
UPDATE Orders SET

CustomerID = @CustomerID,
EmployeeID = @EmployeeID,
OrderDate = @OrderDate,
RequiredDate = @RequiredDate,
ShippedDate = @ShippedDate,
ShipVia = @ShipVia,
Freight = @Freight,
ShipName = @ShipName,
ShipAddress = @ShipAddress,
ShipCity = @ShipCity,
ShipRegion = @ShipRegion,
ShipPostalCode = @ShipPostalCode,
ShipCountry = @ShipCountry

WHERE Orders.OrderID = @OrderID

/* check for error*/
IF (@@ERROR <> 0)

GOTO Error

GOTO Ok

Error:
/* Error Condition, so rollback*/
ROLLBACK TRANSACTION
RETURN -1
GOTO Finally

Ok:
/*Everything is ok, so commit*/
COMMIT TRANSACTION
RETURN 0

222 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

Finally:

END

GO

The SQL UPDATE script uses only basic concurrency

checks. The stored procedure only checks for existence

of the order but does not check if the order has been

changed since it was last retrieved. It will override any

changes made. This method is ideal only in a segregated

multiuser system. In such a system, where updating is

concerned, only one user can update certain rows. For

instance, our system would allow only one connection

per company to the Web Service, and the company will

only be allowed to update its own order.

The sp_InsertOrders Stored Procedure

As is standard, we first do the required declaration:

-- =======================================
-- Script for sp_InsertOrders
-- =======================================

/**/
/* Check if a version of the stored */
/* procedure already exists and if so drop it */
/**/
IF EXISTS (SELECT name

FROM sysobjects
WHERE name = N'sp_InsertOrders'
AND type = 'P')

DROP PROCEDURE sp_InsertOrders
GO

CREATE PROCEDURE sp_InsertOrders
@OrderID integer output,
@CustomerID nchar(5),
@EmployeeID integer,
@OrderDate datetime,
@RequiredDate datetime,
@ShippedDate datetime,

Practical ADO .NET Programming (Part Two) 223

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

@ShipVia integer,
@Freight money,
@ShipName nvarchar(40),
@ShipAddress nvarchar(60),
@ShipCity nvarchar(15),
@ShipRegion nvarchar(15),
@ShipPostalCode nvarchar(10),
@ShipCountry nvarchar(15)

AS
BEGIN

Notice that the stored procedure has an output parame-

ter. Use this technique when some column values are

auto-generated and required in subsequent updates. In

our case, we will need the generated value of the

OrderID column for inserting related rows in Order

Details.

The next step is to define a special variable “@@Now”

that we will use to generate values to help retrieve the

auto-generated value of OrderID. @@Now is set to the

value of the current date and time. Since datetime is

accurate to more than a millisecond, the chance of dupli-

cating the value for @@Now is remote. We then do the

insert, but instead of adding all values for all columns for

certain datetime columns (OrderDate, RequiredDate, and

ShippedDate), we set them to the value generated in

@@Now.

/***/
/* declare a special variable to be used as */
/* a special marker in the inserted row so */
/* that we can retrieve the auto-generated */
/* value for the OrderID column */
/***/
DECLARE @@Now datetime
SET @@Now = GETDATE()

BEGIN TRANSACTION

224 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

/***/
/* Run script to insert in the Orders table */
/* Use the datetime columns and @@Now to add */
/* markers to record so that we can retrieve */
/* the auto generated OrderId */
/***/

Insert INTO Orders(
CustomerID,
EmployeeID,
OrderDate,
RequiredDate,
ShippedDate,
ShipVia,
Freight,
ShipName,
ShipAddress,
ShipCity,
ShipRegion,
ShipPostalCode,
ShipCountry)

VALUES (
@CustomerID,
@EmployeeID,
@@Now,
@@Now,
@@Now,
@ShipVia,
@Freight,
@ShipName,
@ShipAddress,
@ShipCity,
@ShipRegion,
@ShipPostalCode,
@ShipCountry)

/* check for error*/
IF (@@ERROR <> 0)

GOTO Error

Once we have checked for errors with the insert and

everything is fine, the next step is to retrieve the gener-

ated OrderID value. For this, OrderDate, RequiredDate,

and ShippedDate are retrieval arguments since we know

Practical ADO .NET Programming (Part Two) 225

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

that only the newly inserted record will have the value of

the @@Now variable for each of the above mentioned

columns.

/* Retrieve auto-generated OrderID*/
SELECT @OrderID = OrderID
FROM Orders
WHERE OrderDate = @@Now AND

RequiredDate = @@Now AND
ShippedDate = @@Now

/* check for error*/
IF (@@ERROR <> 0)

GOTO Error

Finally, all that remains is to set OrderDate,

RequiredDate, and ShippedDate to the correct value.

/*Update columns used in marker with proper value*/
UPDATE Orders SET

OrderDate = @OrderDate,
RequiredDate = @RequiredDate,
ShippedDate = @ShippedDate

WHERE OrderID = @OrderID

/* check for error*/
IF (@@ERROR <> 0)

GOTO Error

GOTO Ok

Error:
/* Error Condition, so rollback*/
ROLLBACK TRANSACTION
RETURN -1
GOTO Finally

Ok:
/*Everything is ok, so commit*/
COMMIT TRANSACTION
RETURN 0

226 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

Finally:

END

GO

The sp_DeleteOrders Stored Procedure

The stored procedure for delete is much simpler than the

other two:

-- =======================================
-- Script for sp_DeleteOrders
-- =======================================

/***/
/* Check if a version of the stored */
/* procedure already exist and if so drop it */
/***/
IF EXISTS (SELECT name

FROM sysobjects
WHERE name = N'sp_DeleteOrders'
AND type = 'P')

DROP PROCEDURE sp_DeleteOrders
GO

CREATE PROCEDURE sp_DeleteOrders
@OrderID integer

AS
BEGIN
/***/
/* First delete order entries for the order */
/* to avoid constraint violation error. */
/***/

BEGIN TRANSACTION

DELETE FROM [Order Details]
WHERE [Order Details].OrderID = @OrderID

/* check for error*/
IF (@@ERROR <> 0)

GOTO Error

Practical ADO .NET Programming (Part Two) 227

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

/* We can now delete the order from the Orders table */
DELETE FROM Orders
WHERE Orders.OrderID = @OrderID

/* check for error*/
IF (@@ERROR <> 0)

GOTO Error

GOTO Ok

Error:
/* Error Condition, so rollback*/
ROLLBACK TRANSACTION
RETURN -1
GOTO Finally

Ok:
/*Everything is ok, so commit*/
COMMIT TRANSACTION
RETURN 0

Finally:

END

GO

Note that the script is designed in such a way to optimize

the delete process. The stored procedure will delete the

whole order, including the related rows in the Order

Details table, to prevent foreign key constraint violation

in the database.

The UpdateOrders Method

First, we need to declare the UpdateOrders method:

Protected Function UpdateOrders _
(ByRef OrdersTB As DataTable) _
As Integer

'Declare SqlConnection object for connection to database
'Use the Global Private string initialized in
'MyBase.New()

228 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dim objConn As New SqlConnection(SQLConnectionString)

'Declare the DataAdapter that will be
'used to populate the DataSet.
Dim OrderDataAdapter As New SqlDataAdapter()

OrderDataAdapter.UpdateCommand = New SqlCommand()

Then we have to define the command text for Update-

Command. We are going to use the stored procedures

that we created. As you can see below, all you need to

specify in the command text is the stored procedure

name. We must also tell UpdateCommand that the

commandtype is a stored procedure.

OrderDataAdapter.UpdateCommand.CommandText =
"sp_UpdateOrders"

OrderDataAdapter.UpdateCommand.Connection = objConn
OrderDataAdapter.UpdateCommand.CommandType = _
CommandType.StoredProcedure

Next, we need to define all the parameters that the

stored procedure uses. The return value from the stored

procedure is also captured in a parameter. This is a sim-

ple matter of setting the parameter direction to

ParameterDirection.ReturnValue.

'Declare variable to be used as a
'reference to Parameters
Dim workParm As SqlParameter

'return value
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@return", SqlDbType.Int)

workParm.Direction = ParameterDirection.ReturnValue

Remember that the OrderID is read-only, so we choose

the original value and ignore the current value in case it

has been changed.

Practical ADO .NET Programming (Part Two) 229

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

'parameter 1
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@OrderID", SqlDbType.Int)

workParm.SourceColumn = "OrderID"
workParm.SourceVersion = DataRowVersion.Original

For the other parameters, since they are updateable, we

choose the current value to apply any change to the

database.

'parameter 2
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@CustomerID", SqlDbType.NChar, 5)

workParm.SourceColumn = "CustomerID"
workParm.SourceVersion = DataRowVersion.Current

'parameter 3
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@EmployeeID", SqlDbType.Int)

workParm.SourceColumn = "EmployeeID"
workParm.SourceVersion = DataRowVersion.Current

'parameter 4
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@OrderDate", SqlDbType.DateTime)

workParm.SourceColumn = "OrderDate"
workParm.SourceVersion = DataRowVersion.Current

'parameter 5
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@RequiredDate", SqlDbType.DateTime)

workParm.SourceColumn = "RequiredDate"
workParm.SourceVersion = DataRowVersion.Current

'parameter 6
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ShippedDate", SqlDbType.DateTime)

workParm.SourceColumn = "ShippedDate"
workParm.SourceVersion = DataRowVersion.Current

'parameter 7
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ShipVia", SqlDbType.Int)

workParm.SourceColumn = "ShipVia"
workParm.SourceVersion = DataRowVersion.Current

230 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

'parameter 8
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@Freight", SqlDbType.Money)

workParm.SourceColumn = "Freight"
workParm.SourceVersion = DataRowVersion.Current

'parameter 9
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ShipName", SqlDbType.NVarChar, 40)

workParm.SourceColumn = "ShipName"
workParm.SourceVersion = DataRowVersion.Current

'parameter 10
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ShipAddress", SqlDbType.NVarChar, 60)

workParm.SourceColumn = "ShipAddress"
workParm.SourceVersion = DataRowVersion.Current

'parameter 11
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ShipCity", SqlDbType.NVarChar, 15)

workParm.SourceColumn = "ShipCity"
workParm.SourceVersion = DataRowVersion.Current

'parameter 12
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ShipRegion", SqlDbType.NVarChar, 15)

workParm.SourceColumn = "ShipRegion"
workParm.SourceVersion = DataRowVersion.Current

'parameter 13
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ShipPostalCode",
SqlDbType.NVarChar, 10)

workParm.SourceColumn = "ShipPostalCode"
workParm.SourceVersion = DataRowVersion.Current

'parameter 14
workParm = OrderDataAdapter.UpdateCommand. _
Parameters.Add("@ShipCountry", SqlDbType.NVarChar, 15)

workParm.SourceColumn = "ShipCountry"
workParm.SourceVersion = DataRowVersion.Current

We are now ready to do the update, passing only changed

rows to the update method.

Practical ADO .NET Programming (Part Two) 231

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try
'Open the Connection to database
objConn.Open()
'Next process updates.
UpdateOrders = OrderDataAdapter.Update _
(OrdersTB.Select(_

Nothing, Nothing, DataViewRowState.ModifiedCurrent))

Catch ConcurncyErr As DBConcurrencyException
Throw ConcurncyErr

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing command.",
Err)

Finally

'Close the Connection to database
objConn.Close()

End Try

End Function

The DeleteOrders Method

The DeleteOrders method follows a pattern similar to

UpdateOrders.

Protected Function DeleteOrders _
(ByRef OrdersTB As DataTable) _
As Integer

'Declare SqlConnection object for connection to database
'Use the Global Private string initialized in
'MyBase.New()
Dim objConn As New SqlConnection(SQLConnectionString)

'Declare the DataAdapter that will be
'used to populate the DataSet.
Dim OrderDataAdapter As New SqlDataAdapter()

OrderDataAdapter.DeleteCommand = New SqlCommand()

232 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dim workParm As SqlParameter

OrderDataAdapter.DeleteCommand.CommandText =
"sp_DeleteOrders"

OrderDataAdapter.DeleteCommand.Connection = objConn
OrderDataAdapter.DeleteCommand.CommandType = _
CommandType.StoredProcedure

'return value
workParm = OrderDataAdapter.DeleteCommand. _
Parameters.Add("@return", SqlDbType.Int)

workParm.Direction = ParameterDirection.ReturnValue

'parameter 1
workParm = OrderDataAdapter.DeleteCommand. _
Parameters.Add("@OrderID", SqlDbType.Int)

workParm.SourceColumn = "OrderID"
workParm.SourceVersion = DataRowVersion.Original

Try
'Open the Connection to database
objConn.Open()
' Next process updates.
DeleteOrders = OrderDataAdapter.Update(_
OrdersTB.Select(_
Nothing, Nothing, DataViewRowState.Deleted))

Catch ConcurncyErr As DBConcurrencyException
Throw ConcurncyErr

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing command.",
Err)

Finally

'Close the Connection to database
objConn.Close()

End Try
End Function

The big difference from UpdateOrders is the smaller

number of parameters required.

Practical ADO .NET Programming (Part Two) 233

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

The InsertOrders Method

The InsertOrders Method also follows the same pattern.

However, the parameter direction for the OrderID is now

set to ParameterDirection.Output because we will need

this value in the DataSet to update related records in the

Order Details table.

Protected Function InsertOrders _
(ByRef OrdersTB As DataTable) _
As Integer

'Declare SqlConnection object for connection to database
'Use the Global Private string initialized in
'MyBase.New()
Dim objConn As New SqlConnection(SQLConnectionString)

'Declare the DataAdapter that will be
'used to populate the DataSet.
Dim OrderDataAdapter As New SqlDataAdapter()

OrderDataAdapter.InsertCommand = New SqlCommand()

OrderDataAdapter.InsertCommand.CommandText =
"sp_InsertOrders"

OrderDataAdapter.InsertCommand.Connection = objConn
OrderDataAdapter.InsertCommand.CommandType = _
CommandType.StoredProcedure

We also need to instruct UpdateCommand to update data

in the DataSet using the return output parameter. This is

useful because we will only know the true value of

OrderID after we have done the insert. Furthermore,

using foreignkey constraint, we can cascade this update

to include related child rows in the Order Details

DataTable.

'Instruct InsertComand to use outparameter to update
'the dataset.
OrderDataAdapter.InsertCommand.UpdatedRowSource = _
UpdateRowSource.OutputParameters

234 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

All that remains now is to continue with the same pat-

tern as with the other order update methods.

Dim workParm As SqlParameter
'return value
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@return", SqlDbType.Int)

workParm.Direction = ParameterDirection.ReturnValue

'parameter 1
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@OrderID", SqlDbType.Int)

workParm.SourceColumn = "OrderID"
workParm.Direction = ParameterDirection.Output

'parameter 2
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@CustomerID", SqlDbType.NChar, 5)

workParm.SourceColumn = "CustomerID"
workParm.SourceVersion = DataRowVersion.Current

'parameter 3
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@EmployeeID", SqlDbType.Int)

workParm.SourceColumn = "EmployeeID"
workParm.SourceVersion = DataRowVersion.Current

'parameter 4
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@OrderDate", SqlDbType.DateTime)

workParm.SourceColumn = "OrderDate"
workParm.SourceVersion = DataRowVersion.Current

'parameter 5
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@RequiredDate", SqlDbType.DateTime)

workParm.SourceColumn = "RequiredDate"
workParm.SourceVersion = DataRowVersion.Current

'parameter 6
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@ShippedDate", SqlDbType.DateTime)

workParm.SourceColumn = "ShippedDate"
workParm.SourceVersion = DataRowVersion.Current

Practical ADO .NET Programming (Part Two) 235

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

'parameter 7
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@ShipVia", SqlDbType.Int)

workParm.SourceColumn = "ShipVia"
workParm.SourceVersion = DataRowVersion.Current

'parameter 8
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@Freight", SqlDbType.Money)

workParm.SourceColumn = "Freight"
workParm.SourceVersion = DataRowVersion.Current

'parameter 9
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@ShipName", SqlDbType.NVarChar, 40)

workParm.SourceColumn = "ShipName"
workParm.SourceVersion = DataRowVersion.Current

'parameter 10
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@ShipAddress", SqlDbType.NVarChar, 60)

workParm.SourceColumn = "ShipAddress"
workParm.SourceVersion = DataRowVersion.Current

'parameter 11
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@ShipCity", SqlDbType.NVarChar, 15)

workParm.SourceColumn = "ShipCity"
workParm.SourceVersion = DataRowVersion.Current

'parameter 12
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@ShipRegion", SqlDbType.NVarChar, 15)

workParm.SourceColumn = "ShipRegion"
workParm.SourceVersion = DataRowVersion.Current

'parameter 13
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@ShipPostalCode", _
SqlDbType.NVarChar, 10)

workParm.SourceColumn = "ShipPostalCode"
workParm.SourceVersion = DataRowVersion.Current

236 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

'parameter 14
workParm = OrderDataAdapter.InsertCommand. _
Parameters.Add("@ShipCountry", SqlDbType.NVarChar, 15)

workParm.SourceColumn = "ShipCountry"
workParm.SourceVersion = DataRowVersion.Current

Try
'Open the Connection to database
objConn.Open()

'Next process updates.
InsertOrders = OrderDataAdapter.Update(_
OrdersTB.Select(_
Nothing, Nothing, DataViewRowState.Added))

Catch ConcurncyErr As DBConcurrencyException
Throw ConcurncyErr

Catch Err As Exception
Throw New ApplicationException(_
"Exception encountered when executing command.", Err)

Finally

'Close the Connection to database
objConn.Close()

End Try

End Function

The FullUpdateOrder Method

Now that we have completed all the methods required

for updating the Orders and Order Details tables, we can

move on to expose the update functions to the Web Ser-

vice clients. For the web method, we will only need to

expose one method that does all the updates. The advan-

tage of doing one method is to reduce the number of calls

that have to be made to the Web Service. The disadvan-

tage is that we are passing a bigger set of data at once,

and it is more difficult to recover from update errors.

Practical ADO .NET Programming (Part Two) 237

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

The signature for our method is shown here:

Class Method
Name

Web Service
Method Name

Description

FullUpdateOrder FullUpdateOrder Parameter:
ByRef OrderDS
(Dataset)

Return:
String

Return error
message if any

The first step is not the declaration of variables, as is

usually the case, but rather we first check if the given

DataSet contains the two required DataTables for the

update. If it does, then we provide reference variables to

them.

<WebMethod()> _
Public Function FullUpdateOrder _
(ByRef Orders As DataSet) _
As String

'check that the Order table is available in the dataset
If Not Orders.Tables.Contains("Orders") Then
Return "Order table not in dataset"

End If

'check that the Order Details table is available in
'the dataset
If Not Orders.Tables.Contains("Order Details") Then
Return "Order Details table not in dataset"

End If

'reference the two tables for easier access
Dim OrdersTB As DataTable = Orders.Tables("Orders")
Dim OrderDetailsTB As DataTable = Orders.Tables("Order
Details")

We now need to make sure that there is a foreign key

constraint between the two DataTables with cascading

update.

238 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Make sure a foreign key between parent table (Orders)
'and child table (Order Details) exists
'Create foreign key
Dim fk_orders As ForeignKeyConstraint = _
New ForeignKeyConstraint("fk_orders", _
OrdersTB.Columns("OrderID"), _
OrderDetailsTB.Columns("OrderID"))

fk_orders.DeleteRule = Rule.Cascade
fk_orders.UpdateRule = Rule.Cascade

' Add new foreign key constraint
Try
OrderDetailsTB.Constraints.Add(fk_orders)

Catch err As Exception
'If cannot add constraint, then
'it must already exist or some other
'restrictions exist

'We can still try to update though
End Try

The key is only vital if we are going to do inserts.

We are now ready to begin the updates. First, we take

care of the deletes. To avoid concurrency errors in the

DataSet, we delete the child records first. If we do not do

so, the DeleteOrders method will still work. However,

when we later run the DeleteOrderDetails method, it

will fail because child records marked as deleted in the

DataSet (due to cascade delete) will no longer exist in

the database and a concurrency error would be thrown.

In other words, the DataSet will be out of sync with the

database.

'The first step is to do the deletion
'Remember that must delete child first
'to avoid concurrency issue in dataset
Try
DeleteOrderDetails(OrderDetailsTB)

Catch Err As Exception
Return "Error deleting rows in OrderDetails,
Message:" Err.Message

End Try

Practical ADO .NET Programming (Part Two) 239

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try
DeleteOrders(OrdersTB)
Catch Err As Exception
Return "Error deleting rows Orders, Message:" _
& Err.Message

End Try

Next, we do the inserts and the updates:

'Do Inserts
'With insert, the parent has to be inserted first
'to avoid concurrency error
Try
InsertOrders(OrdersTB)

Catch Err As Exception
Return "Error inserting rows Orders, Message:" &
Err.Message

End Try

Try
InsertOrderDetails(OrderDetailsTB)
Catch Err As Exception
Return "Error inserting rows in OrderDetails,
Message:" & Err.Message

End Try

'Finally do the updates
Try
UpdateOrders(OrdersTB)

Catch Err As Exception
Return "Error updating rows Orders, Message:" &
Err.Message

End Try

Try
UpdateOrderDetails(OrderDetailsTB)

Catch Err As Exception
Return "Error updating rows in OrderDetails,
Message:" & Err.Message

End Try
Return ""

End Function

240 Chapter 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

The method will return error messages if any exceptions

are thrown. Otherwise, an empty string is returned.

Testing the Update Methods

Since these methods take DataSet as a parameter, the

Web Server cannot automatically generate test pages. To

do testing, you have to either create test methods, which

you then comment out when you move from production

to live system, or you can create a test application that

uses the Web Service.

In the source code on the companion CD, you will find

some test methods that you can use. Also included are

additional methods that return employees and products.

Summary

The methods we developed for updating via DataSet and

DataAdapter in this chapter are simple but form the basis

on which you can build. Remember that we have only

concentrated on the data access and update. In a com-

mercial system, you will also need to consider other

issues, such as performance, advance concurrency man-

agement, error recovery, and security.

Practical ADO .NET Programming (Part Two) 241

P
a
rt

II

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part III

Special
Topics

243

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 8

Migrating ADO
Applications

In This Chapter

When you have a new version of a programming lan-

guage, the biggest issue is whether migration of an exist-

ing application will bring any added benefits. Generally,

the main reason for migration is for improved perfor-

mance or added features that the new tool brings to the

development process.

In this chapter, you will learn about different issues that

you need to consider before you choose to migrate any

existing ADO application to ADO .NET.

Legacy of Time

If you are not new to programming, you probably have,

over time, written a fair amount of code. Even if you are

relatively new to programming, you might have inherited

code that you need to maintain and change. The legacy of

time is such that we inherit many components and appli-

cation frameworks that we need to maintain. Some code

becomes redundant as new features are incorporated

directly into the programming language, whereas other

code is so specific to a particular need that it goes

through much iteration and upgrade to improve perfor-

mance and add additional capability.

245

TEAM LinG - Live, Informative, Non-cost and Genuine!

If your main development platform is Microsoft, it is also

likely that many of the components are in the form of

DLLs or COM components. If these applications need

access to a database of some sort, it is more than likely

that you have a fair bit of code using ADO.

Language Changes

Before embarking head-on into converting your code to

.NET, there are a few changes in the language syntax and

structure of which you must be aware. If you are migrat-

ing an ASP application, you must keep in mind that

VBScript has been replaced with VB .NET. Considering

that VB .NET is practically a new language when com-

pared to Visual Basic and VBScript, the makers of .NET

have done a very good job of ensuring backward compati-

bility with existing Visual Basic applications. The sup-

port, however, is not 100%. There are a few

considerations that you must take into account:

� Data type variant: The variant data type has been

replaced with the object data type. The object data

type must be explicitly cast to another data type

before it can be used.

� Method calls: All method calls, regardless of the

number of parameters, must now use parentheses.

This is true even when there is no parameter.

Me.Close()

� Arguments: The default for passing arguments is

now by value, as opposed to by reference. To pass

arguments by reference, you must now use the

ByRef keyword.

� Object assignment: SET and LET keywords are no

longer valid. You can now use the assignment

operator.

246 Chapter 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

AnObject = AnotherObject

� Default property: To set the default property, you

must explicitly reference the property. Previously,

this was optional. However, the indexed default prop-

erties are still supported. For example, the Fields

property, a default collection property of the

RecordSet, does not have to be explicitly referenced.

'[Visual Basic]
Dim StrObjectName as AnObject = AnotherObject

RS("CustomerID").Value = "VINET"

'[VB.NET]
AnObject.Name = AnotherObject.Name

Dim StrObjectName as AnObject = AnotherObject.Name

'This line is still supported
RS("CustomerID").Value = "VINET"

'and is equivalent to
RS.Fields("CustomerID ").Value = "VINET"

� Integer and long: The integer data type is now 32

bits and the long data type is 64 bits.

� Lazy evaluation: VB .NET now uses lazy evalua-

tion for Boolean expressions. This means that as

soon as the Boolean expression can be evaluated, the

expression is not processed further. So, in an AND

expression, as soon as a false value is found, the

expression is no longer parsed any further and the

whole expression is evaluated to False. In the case of

an OR expression, as soon as a true value is found,

the evaluation terminates and the whole expression

is evaluated to True. This is done for speed, but you

must remember that if you depend on side effects of

certain functions that return Boolean values, you

Migrating ADO Applications 247

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

must nest the expression instead of using AND or

OR expressions.

� Explicit casting: If you need to convert from one

data type to another, you must explicitly cast the data

type. For example, if a string is expected, it casts

another data type as a string.

Response.Write("Employees ID is: " &
CStr(IntEmployeeID))

� Dim statement: Variables within the same Dim

statement will be of the same type.

[Visual Basic]
'A and B is a variant and only C is integer
DIM A, B, C As integer

[VB.NET]
'A, B and C are integer
DIM A, B, C As integer

� Class property syntax: The syntax no longer

includes Property Get and Property Set. The new

property syntax is similar to that in C#.

[Visual Basic]
Public Property AProperty As String

Get
aProperty = APrivateVariable

End Get
Set

APrivateVariable = value
End Set

End Property

[VB.NET]
Property AProperty() As String

Get
Return APrivateVariable

End Get
Set(ByVal Value As String)

APrivateVariable = value
End Set

End Property

248 Chapter 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

� & operator: When using the & operator to concate-

nate strings, spaces must always be included.

[Visual Basic]
'No space required between & and variables
AllString = String1&String2&String3

[VB.NET]
'Must have space between & and variables
AllString = String1 & String2 & String3

� If statements: All If statements must be on multi-

ple lines and end with End If.

[VB Script]
IF X Then Y

[VB.NET]
If X Then
Y
End If

What about COM?

With ASP web applications, the only way to compile and

encapsulate business logic was to use COM components.

COM components are also used in Visual Basic to add

additional features and functions. Let’s look at how .NET

helps with migration of applications using COM

components.

Most COM components that work in ASP will work in

ASP .NET. Late-bound calls are still supported using

Server.CreateObject; however, for better performance, it

is recommended that early-bound calls are used. Before

you can use a COM component in .NET, you must first

expose the component in .NET assemblies. With Visual

Studio.NET, this is very easy: You simply add a COM ref-

erence to your project, and the rest is automatically

taken care of for you. If you are only using the .NET

SDK, you can use the Type Library Importer

Migrating ADO Applications 249

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

(TlbImp.exe). Type Library Importer converts standard

COM components to the equivalent .NET Framework

interoperations (InterOp) assemblies by building man-

aged wrappers around the components.

.NET Framework Bidirectional Migration
Support

So far, we have seen how to allow .NET applications to

use existing COM components. What if we need to

migrate the COM component itself but still want to use it

in existing ASP and Visual Basic applications? Can .NET

help? The answer to this is, of course, yes. The .NET

InterOp services offer bidirectional support. It means

that .NET components through InterOp service can be

exposed as COM components. The System.Runtime.

InteropServices namespace provides three categories of

interop-specific attributes that you can use. However, I

will not go into more detail because this is beyond the

scope of this book.

Note: It is far easier to expose COM to .NET than
to expose .NET as COM.

ASP and ASP .NET

Since ASP and ASP .NET uses different run times on the

same server, the two can co-exist even within the same

web application. This is usually while migration is in

progress. You can slowly convert the ASP pages to ASP

.NET, and the users can immediately get the benefits of

the change.

What about ADO?

As far as .NET is concerned, ADO is simply a COM com-

ponent. That means that all access to ADO is done

through .NET COM InterOp. ADO objects and ADO

250 Chapter 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

.NET are mutually exclusive. As a result, ADO and ADO

.NET can exist together in the same application.

The best way to illustrate this is through an example.

The easiest example to look at is an ASP application.

[ASP]

<%@LANGUAGE=VBSCRIPT%>
<!
This ASP example uses ADO to read records from the
Northwind database and print two fields from all returned
records to an ASP page. Connection to the Northwind
database is through an ODBC system data source.

>
<html>
<body>
<%
dim ADOconn, ADORecSet, SelectOrderSTR

SelectOrderSTR = _
"SELECT OrderID, CustomerID, " & _
"EmployeeID, OrderDate, " & _
"RequiredDate, ShippedDate, " & _
"ShipVia, Freight, " & _
"ShipName, ShipAddress, " & _
"ShipCity, ShipRegion, " & _
"ShipPostalCode, ShipCountry " & _
"FROM Orders with (NOLOCK)"

set ADOconn = Server.CreateObject("ADODB.Connection")
ADOconn.Open "DSN=NorthWindODBC;UID=sa;PWD=sa;"

set ADORecSet = ADOconn.execute(SelectOrderSTR)
' Query didn't return any records.
if ADORecSet.BOF and ADORecSet.EOF then

Response.Write("No Records.")
else

'Query didn't return any records..MoveFirst
Do While Not ADORecSet.EOF

Response.Write(ADORecSet ("CustomerID") & " : " _
& ADORecSet ("OrderID") & "
")

ADORecSet.MoveNext

Migrating ADO Applications 251

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

Loop
Response.Write("<p>End of data.")

end if
ADORecSet.close
set ADORecSet = nothing

%>
</body>
</html>

The minimum required to convert the above to ASP

.NET is shown below. The file can be created simply by

changing the extension of the ASP file to aspx.

[ASP .NET]

<%@Page aspcompat=true Language = VB%>
<!
This ASP example uses ADO to read records from the
Northwind database and print two fields from all returned
records to an ASP page.
Connection to the Northwind database is through an ODBC
system data source.
>
<html>
<body>
<%
dim ADOconn, ADORecSet, SelectOrderSTR

SelectOrderSTR = _
"SELECT OrderID, CustomerID, " & _
"EmployeeID, OrderDate, " & _
"RequiredDate, ShippedDate, " & _
"ShipVia, Freight, " & _
"ShipName, ShipAddress, " & _
"ShipCity, ShipRegion, " & _
"ShipPostalCode, ShipCountry " & _
"FROM Orders with (NOLOCK)"

'Set is removed
ADOconn = Server.CreateObject("ADODB.Connection")
'Parentheses added
ADOconn.Open("DSN=NorthWindODBC;UID=sa;PWD=sa;")

'Set is removed

252 Chapter 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

ADORecSet = ADOconn.execute(SelectOrderSTR)
' Query didn't return any records.
if ADORecSet.BOF and ADORecSet.EOF then

Response.Write("No Records.")
else

'Query didn't return any records..MoveFirst
Do While Not ADORecSet.EOF

' Specify Value property.
Response.Write(ADORecSet ("CustomerID").value
& " : " & ADORecSet ("OrderID").value & "
")

ADORecSet.MoveNext
Loop
Response.Write("<p>End of data.")

end if
ADORecSet.close
'Set is removed
ADORecSet = nothing

%>
</body>
</html>

As is clearly shown, the main changes are to make the

application conform to the new VB .NET syntax. Also,

notice that the page directives attribute, aspcompat, is

set to True. This is required so that the compiler knows

that the page will include ASP type syntax and directives

such as <% %> blocks for server scripts. This is the

absolute minimum required. Also notice that in the

example, the <%@Page does not specify any

code-behind file.

In the example, we are using late binding, but for perfor-

mance reasons it is recommended that you use early

binding. You can only use early binding when you use

compiled code, and for ASP .NET, this means using

code-behind files. Note that this is the default for ASP

.NET.

To use early binding after you have created the aspx file,

you need to add the ADO reference. From within your

project, go to the Add Reference dialog box and choose

the COM tab. Look for the latest version of Microsoft

Migrating ADO Applications 253

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

ActiveX Data Objects library. In our example, I will use

version 2.7, so I choose Microsoft ActiveX Data Objects

2.7 Library. See Figure 8-1.

Once you click on Select and OK, Visual Studio .NET

will add a reference to your project with a namespace

called ADODB. See Figure 8-2.

The ADODB namespace will now contain all the objects

and associated methods that ADO uses. The next step is

254 Chapter 8

Figure 8-1: The Add Reference dialog

Figure 8-2: ADODB namespace added to the project

TEAM LinG - Live, Informative, Non-cost and Genuine!

to create a method in the class that we can use in the

HTML section of the aspx file. We can still use the same

example that we have used so far. We encapsulate this in

a method called GetData.

Public Sub GetData()
'Create new ADO connection
Dim ADOconn As New ADODB.Connection()

'Declare Record Set
Dim ADORecSet As ADODB.Recordset

'Declare string variable
Dim SelectOrderSTR As String

SelectOrderSTR = _
"SELECT OrderID, CustomerID, " & _
"EmployeeID, OrderDate, " & _
"RequiredDate, ShippedDate, " & _
"ShipVia, Freight, " & _
"ShipName, ShipAddress, " & _
"ShipCity, ShipRegion, " & _
"ShipPostalCode, ShipCountry " & _
"FROM Orders with (NOLOCK)"

ADOconn.Open("DSN=NorthWindODBC;UID=sa;PWD=sa;")

'Set is removed
ADORecSet = ADOconn.Execute(SelectOrderSTR)
' Query didn't return any records.
If ADORecSet.BOF And ADORecSet.EOF Then

Response.Write("No Records.")
Else

'Query didn't return any records..MoveFirst
Do While Not ADORecSet.EOF
'Specify Value property.

Response.Write(ADORecSet("CustomerID")
.Value & " : " & ADORecSet("OrderID")
.Value & "
")

ADORecSet.MoveNext()
Loop
Response.Write("<p>End of data.")

End If

Migrating ADO Applications 255

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

ADORecSet.Close()
'Set is removed
ADORecSet = Nothing

End Sub

The main difference with our previous example is that

we are using late binding and we no longer need to use

Server.CreateObject. The IntelliSense features of Visual

Studio can now help with the programming and provide

compile-time checking and strongly typed data types.

However, we are not done yet. The final step is to use

the method in the web page. To do this, you need to add a

line in the HTML view of the aspx file.

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="Test2.aspx.vb"
Inherits="WebApplication1.Test2"%>

<HTML>
<! This ASP example uses ADO to read records from the
Northwind database and print two fields from all
returned records to an ASPX page. Connects to Northwind
database through an ODBC system data source. >
<body>
<%
GetData()

%>
</body>
</HTML>

As you have probably gathered, .NET offers very good

support for migration. In the case of ASP .NET, ASP and

ASP .NET pages can even coexist in the same applica-

tion. This makes it easier to migrate an application in dif-

ferent stages. As for Visual Basic applications, as long as

you remember the few syntax changes, the migration

process is simple.

256 Chapter 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

To Migrate or Not to Migrate?

The biggest question now is whether or not to migrate.

The answer to this question will depend on various fac-

tors, but keep in mind the old saying “If it ain’t broke,

don’t fix it.”

Does the application lack certain desirable features that

.NET can bring? If so, the application is a candidate for

migration; however, this will still depend on other

factors.

Are the application layers well-partitioned? In other

words, are the presentation layer, business layer, and

data layer well-partitioned? If the application is not well-

designed, migration will be more difficult. It might be

better to design a new system from scratch than to

migrate what in effect is a badly designed system. This

has to be weighed against cost and time.

Is data communication with other platforms or over the

Internet with other applications required? XML and dis-

connected data connection is a breeze with ADO .NET.

Is the current client load overwhelming or will it soon

overwhelm the current system? This is particularly true

with e-commerce and business-to-business applications.

.NET has various features that allow developers to build

distributed systems that lend themselves very well to

scaling and load balancing. Furthermore, ASP .NET has

many performance enhancements over ASP.

Do you have the required support staff? .NET is rela-

tively new, and even if you are an old hand with Visual

Basic, there are many new things in VB .NET that you

will need to learn and master. It might be worthwhile to

delay the migration until your staff has acquired the

Migrating ADO Applications 257

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

required level of expertise and experience. This book

will go some way in helping you along that track.

Once you have considered the various factors, the next

stage is to plan the migration.

Migration Steps

The prime candidates for migration are usually ASP web

applications. This is because ASP .NET is a great leap

forward in both design and run-time implementation of

web applications. It provides various tools and enhance-

ments that many web application developers wanted in

the past. So from this point of view, we will consider

mainly ASP applications, but the steps mentioned will

also apply to Visual Basic.

Step 1: Migrate the Clients

Migrating the clients or presentation layer is probably

the easiest step. This will allow you to build up experi-

ence and get most of the mundane work out of the way.

The client can include both ASP pages and Windows

Forms. Access to the business layer, which previously

was done through COM, can still be maintained by using

the InterOp services.

Step 2: Create .NET Wrappers to COM
Components

Once the new clients are implemented and tested, the

next step is to create .NET wrapper classes to the COM

components. These are simply .NET classes that act as

an interface to the COM components. The logic is still

implemented in COM, but the clients now need to be

changed so that they only access the .NET classes. At

this stage the clients should be fully .NET.

258 Chapter 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

Step 3: Migrate the Business Objects

Now you can go ahead and migrate all the COM compo-

nents to .NET classes. At this stage, changes to the

application will not affect the clients. Once this step is

over, the application will be fully .NET.

Summary

In this chapter, we discussed the various issues that you

need to consider when migrating applications to .NET.

We concentrated mainly on COM and ADO because they

are more relevant to this book. There are many more

issues to consider when you migrate an application. For

more details, you can look in the help files. A good article

is included that can be accessed from ms-help://

MS.VSCC/MS.MSDNVS/dnaspp/html/aspnetmigrissues.

htm in the Visual Studio. NET help file.

Migrating ADO Applications 259

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 9

Manipulating
Multidimensional
Data

In This Chapter

This chapter is a case study that covers the design and

implementation of an OLAP solution in Visual Studio

.NET utilizing the industry’s premier OLAP Microsoft

SQL Server Analysis Services as the data store.

As an in-house systems developer, you realize that your

company is bracing for an era of data revolution. This is

at a time when information is the key to the success of

your organization and its business processes. The mar-

keters would like to analyze the trend of customer

behavior, while the salespeople want to keep track of

sales activities over a long period of time. Such informa-

tion is an imperative part of plotting your company’s

future marketing and production strategy. As a systems

developer, you are struggling to design an effective and

scalable software solution that your company’s analysts

can use to assess its performance in the marketplace.

You quickly realize that implementing custom reports

based on the company’s day-to-day data processing sys-

tem would simply create a bottleneck as more stress is

imposed on the databases. Thus, you revert to the design

of an OLAP data warehouse.

261

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Quick Primer on Analysis Services

OLAP stands for online analytical processing. In a typical

OLAP data warehouse, there is an OLAP server that

stores data and a client tool that users can utilize to per-

form analysis of the stored data. The multidimensional

storage format is very different from the relational data

storage that you are used to. It ensures that the proper

relations are built between database entities, and it for-

mats the data in a way that is easy and efficient to

analyze.

SQL Server 2000 Analysis Services is Microsoft’s pow-

erful OLAP data warehouse solution architecture that

you can use to provide real-time corporate performance

analysis.

Before we go over the development of the OLAP solu-

tion, let’s take a quick walk through its installation and

identify its key features. This chapter does not turn you

into an Analysis Services expert. To obtain a much

deeper insight into the technology, you may want to read

Professional SQL Server 2000 Data Warehousing with

Analysis Services.

Analysis Services Installation

This section focuses on the installation of Microsoft SQL

Server 2000 Analysis Services.

System Requirements

System Hardware Requirements

Table 9-1 is a list of all the hardware requirements for the

installation of SQL Server 2000 Analysis Services.

262 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Table 9-1: Hardware requirements for SQL Server 2000 Analysis Services

Hardware
Component

Minimum Requirement

Processor Type:
Intel Pentium I or higher

Speed:
135 MHz

Memory 64MB

Disk Storage Server:
A minimum server installation requires 50MB. The
full server installation requires up to 130MB.

Client:
The full installation of client components requires
12MB.

System Software Requirements

Table 9-2 is a list of all the software requirements for the

installation of SQL Server 2000 Analysis Services.

Table 9-2: Software requirements for SQL Server 2000 Analysis Services

Software
Component

Minimum Requirement

System
Software

Server:
For any of the following Windows operating
systems, the OS must not be a domain controller:
Windows NT Server 4.0, SP5 +
Windows 2000 Server

Client:

Any of the following Windows operating systems:
Windows 95 with DCOM 5
Windows 98
Windows NT Workstation 4
Windows 2000 Professional
Windows XP Professional

Other
Software

Internet Explorer 5+ is a required component for
the administration of the server. Install this software
on the client or server from which you would want
to manage the OLAP server.

Manipulating Multidimensional Data 263

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

Installation Components

Analysis Services comes with several modularized com-

ponents. This provides you with the flexibility of install-

ing only the components that you want to work with.

Table 9-3 is a list of the components that can be installed.

Table 9-3: The installation components

Component
to Install

Component
Type

Component
Storage
Requirement

Description of
Component

SQL Server
2000
Analysis
Server

Server
component

34140KB A group of executables
and other files that
make up the Analysis
Services Server. It is
only installed on the
server machine and is
required for an OLAP
solution.

SQL Server
2000
Analysis
Manager

Client-server
component

35304KB A group of files that
provides the developer
with an intuitive GUI
for manipulating and
administering objects
on the Analysis Server.
This component can
be installed on the
server, the client, or
both. Microsoft also
provides a web-based
administration tool for
remote administration.

Decision
Support
Objects
(DSO)

Client-server
component

7128KB DSOs are a group of
COM+-based
components that have
very sophisticated
object models for the
purpose of custom
server administration
and management of
metadata processes.

264 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Component
to Install

Component
Type

Component
Storage
Requirement

Description of
Component

PivotTable
Service

Client
component

9776KB The PivotTable Service
installs the OLEDB
Provider for analysis
services (MSOLAP) and
ADO MD (ActiveX
Data Objects Multidi-
mensional) that pro-
vide all the means of
communication be-
tween the database
server and the client
applications.

The OLEDB Provider
for Analysis Services is
the component used in
the .NET Framework to
access OLAP
databases.

Sample
Applications

Client
component

2772KB Sample applications
that demonstrate the
use of Analysis
Services. For our case
study, we will use the
sample FoodMart
2000 database.

Books
Online

Client-server
component

29844KB Books Online is a very
comprehensive help
file featuring a full
reference to SQL
Server 2000 Analysis
Services.

As you may have noticed, Analysis Services comes with

a lot of components. Simply knowing what the compo-

nents are and where to install them, however, does not

help in performing the right installation. Next, we will

walk through the installation process of Analysis

Services.

Manipulating Multidimensional Data 265

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

Setup

The setup of SQL Server 2000 Analysis Services is quite

straightforward. However, you do need to know exactly

what, where, how, and why to install. This section pro-

vides a complete walk-through of Analysis Services

installation.

The following steps are provided to guide you through

the installation process. At every step, you are intro-

duced to the installation issues, which are explained in

great detail.

Starting Up

1. Insert the SQL Server 2000 Setup CD into your CD-
ROM drive.

2. From the Start menu, click Run. This loads the Win-
dows Run dialog.

3. On the Windows Run dialog, click the Browse

button.

4. In the Browse dialog that is loaded, locate and open
the Autorun.exe file on the Setup CD. It is usually
located in the root directory. If autorun is enabled on
your computer, Autorun.exe will run automatically
and you can skip all these steps.

5. Click OK on the Run dialog. The SQL Server 2000
Welcome dialog should pop up.

Running Setup

1. To start the installation, click the SQL Server Com-

ponents option on the Welcome dialog. The Install
Components dialog opens, as illustrated in Figure
9-1.

266 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

2. The Install Components dialog gives you three
options:

� Install Database Server: This option installs

an SQL Server.

� Install Analysis Services: This option installs

the Analysis Services.

� Install English Query: This option installs the

Microsoft English Query.

3. Click the Install Analysis Services option to start
the InstallShield Setup Wizard.

4. You are presented with a Welcome dialog that intro-
duces you to Microsoft Analysis Services. Click the
Next button.

5. After reading the license agreement, click the Yes

button on the Software License Agreement dialog.

6. The Select Components dialog is the most important
dialog in the installation of Analysis Services. You are
given the options for installing the components that

Manipulating Multidimensional Data 267

P
a
rt

II
I

Figure 9-1: The Install Components dialog for the SQL
Server 2000 Developer Edition

TEAM LinG - Live, Informative, Non-cost and Genuine!

were discussed in Table 9-3. The Select Components
dialog is illustrated in Figure 9-2.

7. In the Select Components dialog, specify which Anal-
ysis Services components you want to install.

To select a component:

a. Click on that particular component and make

sure that the check box to its left is selected.

b. The operation is vice versa for deselecting a

selected component.

8. Although it is advisable to leave the default destina-
tion folders as they are, you may decide to install
different components to different locations.

To specify the destination location of a component:

a. Click on that particular component.

b. Click the Browse button.

c. In the Choose Folder dialog, select the destina-

tion folder into which you wish to install the

268 Chapter 9

Figure 9-2: The Select Components dialog

TEAM LinG - Live, Informative, Non-cost and Genuine!

component. You can even specify a location that

does not exist. In this case, the installation will

create the location for you. After selecting a loca-

tion, click the OK button on the Choose Folder

dialog.

9. When you are ready to continue with the installation
process, click the Next button.

10. For easier access to the Analysis Services compo-
nents, the installation process provides you with an
option to specify a program folder for the compo-
nents. Do that in the Select Program Folder dialog
illustrated in Figure 9-3.

11. Click the Next button to start the setup process.
The setup for Analysis Services may take a while,
depending on the configuration of the machine on
which it is being installed. The procedure for the
setup usually starts by updating your machine with
the latest MDAC components that are available on
the Setup CD-ROM. Following that, Analysis

Manipulating Multidimensional Data 269

P
a
rt

II
I

Figure 9-3: The Select Program Folder dialog

TEAM LinG - Live, Informative, Non-cost and Genuine!

Services files are copied to your hard disk, and the
necessary configuration settings are made to the
Windows registry.

12. After the files are copied and the settings made, the
setup procedure displays the Setup Complete dialog.
Due to some changes that occurred with your config-
uration settings during setup, you are asked to
restart your computer. You may choose the Restart

Now option or you can restart later. However, it is
very important to reboot the computer before using
the Analysis Services. After making your selection,
click the Finish button.

Understanding the Data Source

This section identifies the major low-level parts of Anal-

ysis Services and then focuses on its architecture for the

purpose of our example. Analysis Services has two parts:

� The OLAP Server, which stores the data

� The PivotTable Service, which is a set of tools that

allows data manipulation from the client

For our example, we are going to take a look at the sam-

ple FoodMart 2000 database that comes with Analysis

Services. The general relationship of the client-server

data manipulation architecture of Analysis Services is

illustrated on the following page.

270 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Relational Database

The relational database for the FoodMart 2000 sample is

implemented as a Microsoft Access application. It is

located under the Samples folder, which is installed

inside the Analysis Services installation directory. This

path depends on where you originally specified the

installation directory of Analysis Services. There are two

files inside this directory that we are going to look at:

� FoodMart 2000.mdb: This is the actual relational

database from which the OLAP database is created.

� FoodMart 2000.cab: This is an archive of the OLAP

database provided by the installation process. We will

restore this database after our discussion of the rela-

tional structure of the FoodMart 2000.mdb.

The FoodMart 2000 database keeps track of sales activi-

ties for a fictional company called FoodMart. Critical

information about customers, products, employees,

warehouses, and purchases are kept inside the database.

It is not our goal to examine the exact design of the data-

base, so I will not go into a detailed discussion of the

Manipulating Multidimensional Data 271

P
a
rt

II
I

Figure 9-4: Analysis Services architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

database structure. Figure 9-5 provides a quick summary

of the relational structure of the FoodMart database.

The OLAP Database

The OLAP Database Server stores data in a multidimen-

sional format. The data is grouped into cubes that the

database designer specifies.

Populating the OLAP Database

In general, an OLAP database is a warehouse database. It

follows that the data must be available from a different

source in order for it to be populated. In Figure 9-4, the

OLAP database is using data from four separate data-

bases: Accounts, Sales, Human Resources, and CRM.

Data from these four databases is combined and stored in

the OLAP database for future analysis. The data source

from which to obtain data for an OLAP database does not

necessarily have to be a relational data source. It can be

any form of data that you want to analyze. This includes

text files, Windows Active Directory, and Exchange

Server, just to name a few.

272 Chapter 9

Figure 9-5: The relational structure of the FoodMart database

TEAM LinG - Live, Informative, Non-cost and Genuine!

How is the Data Stored?

The data in an OLAP database is stored inside cubes. A

cube is simply a conceptual way of expressing a multidi-

mensional storage model. OLAP cubes have three stor-

age architectures: MOLAP, ROLAP, and HOLAP. For a

more in-depth overview of multidimensional storage

architecture, see Professional SQL Server 2000 Data

Warehousing with Analysis Services.

PivotTable Service

The PivotTable Service is the client tool used to access,

retrieve, and manipulate multidimensional data from the

OLAP Server.

Note: You cannot update an OLAP data source
because it is simply an Analysis Server and nothing
more. It is not designed to provide OLTP support.

The PivotTable Service has a very loose architecture

that you must understand before attempting to program

for Analysis Services. The PivotTable Service architec-

ture has two main components to start with: the OLEDB

Provider for OLAP and ADO MD. We will take an

in-depth look at both of these technologies as we proceed

through this chapter.

OLEDB Provider for OLAP

OLEDB Provider for OLAP is one of the thousands of

OLEDB providers available on the market today.

Microsoft developed the OLEDB Provider for OLAP

MSOLAP driver to be used specifically with any OLAP

database, although it is optimized for Analysis Services.

OLEDB Provider for OLAP is to Analysis Services what

the SQLOLEDB driver is to SQL Server. To manipulate

OLAP data, developers can use ADO MD, implement

their own consumers for OLEDB for OLAP, or use the

provider’s API in their code. Expect to see more

Manipulating Multidimensional Data 273

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

extensive .NET-enabled tools out with the next version

of SQL Server Analysis Services.

Multidimensional Expressions (MDX)

MDX is the data manipulation language (DML) used for

OLAP data sources. Its syntax is very close to that of its

predecessor, SQL. The only difference between the two

is that the latter can only manipulate the relational data

source, while MDX is used in a multidimensional sce-

nario. Therefore, MDX is simply an optimized version of

SQL. OLEDB providers, such as SQLOLEDB, cannot

process MDX queries. However, MSOLAP can process

SQL queries, and it is possible to query OLAP data

sources with SQL.

This section does not cover the entire MDX specification

as released by Microsoft. We will walk through some

simple syntax in our examples and explain the semantics

of the language. Unless you have a good knowledge of

cubic data storage, it is impossible to fully understand

the MDX syntax. For a full discussion of the topic, see

Professional SQL Server 2000 Data Warehousing with

Analysis Services.

ActiveX Data Object Multidimensional
(ADO MD)

For those who are reading about it for the first time,

ADO MD may seem to be something new. In fact, it is

not, at least if you are accustomed to ADO. ADO MD is

an elegant COM component library that is simply an

extended version of ADO (ActiveX Data Object). While

Microsoft implemented ADO as a consumer of OLEDB,

ADO MD is a consumer to OLEDB Provider for OLAP. It

is virtually impossible to retrieve multidimensional data

using ADO. The objects in ADO MD have been opti-

mized to do this job efficiently and seamlessly.

274 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-6 provides you with a nice view of the ADO MD

object model. In the next few sections, you will be read-

ing and learning more about it. There is even an example

of how to use it in your code to retrieve and manipulate

OLAP data on the client application.

As I explain the concepts of ADO MD, I will also illus-

trate how to use it through the implementation of a small

Windows Form application. The code is very easy and

straightforward to follow. It is provided on the companion

CD.

Visiting the Design of the Database

Through the ADO MD objects, it is possible for you to

obtain every single detail of knowledge you require about

the structure of an OLAP data source. It is possible to

take a look at all the objects in the data source. For this

small section, our focus is on Part A of Figure 9-6. We

will discuss the route from the Catalog object to the

Level object.

Manipulating Multidimensional Data 275

P
a
rt

II
I

Figure 9-6: The ADO MD object model

TEAM LinG - Live, Informative, Non-cost and Genuine!

When operating on an OLAP database, the Catalog object

represents the entire database. It has three properties:

Name, ActiveConnection, and CubeDefs. The name of

the Catalog object in our example would be FoodMart

2000. The properties and their purposes are illustrated in

Table 9-4:

Table 9-4: Properties of the Catalog object

Property Purpose

Name Specifies the name of the OLAP database. This
property is read-only.

ActiveConnection This defines the connection string used to
connect to the database. This property is read
and write. Upon assigning a valid string value
to it, the Catalog object automatically connects
to the data source.

CubeDefs This property is a collection of all the Cube
objects referencing all the cubes that are
available in the database referenced by the
Catalog object.

A Cube object is a reference to one OLAP cube in the

database. It is not possible to access a cube directly using

the Cube object. You must have a valid Catalog object

with a CubeDefs collection containing all the available

cubes. The properties of the Cube object are discussed in

Table 9-5.

Table 9-5: Properties of the Cube object

Property Purpose

Name Specifies the name of the OLAP cube. This
property is read-only.

Dimensions This is a collection of all the dimensions
available for the particular cube.

276 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

The FoodMart 2000 database contains six cubes:

� Budget

� HR

� Sales

� Trained Cube

� Warehouse

� Warehouse and Sales

The Dimension object is one dimension of an OLAP cube.

It can be instantiated using one item in the Dimensions

collection of a Cube object. The properties of the Dimen-

sion object are discussed in Table 9-6.

Table 9-6: Properties of the Dimension object

Property Purpose

Name Specifies the name of the cube dimension. This
property is read-only.

Hierarchies This is a collection of all the hierarchies
available for the particular dimension.

A Hierarchy object stands for a valid hierarchy of a dimen-

sion. It is initialized using an item from the Hierarchies

collection property of a Dimension object. The properties

of the Hierarchy object are discussed in Table 9-7.

Table 9-7: Properties of the Hierarchy object

Property Purpose

UniqueName Specifies the name of the cube dimension. This
property is read-only.

Levels This is a collection of all the levels available for
the particular Hierarchy. It is important to note
that while inside a database, levels have
different positions and can be children of
another level; this is not the case inside the
Levels collection. Level objects maintain their
child-parent state through one of their own
properties.

Manipulating Multidimensional Data 277

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

In this example, you take a look at the Windows applica-

tion that retrieves an OLAP database design.

This is the code for the form:

Public Class Form1
Inherits System.Windows.Forms.Form

Dim objCatalog As Object

#Region " Windows Form Designer generated code "

Public Sub New()
MyBase.New()
'This call is required by the Windows Form
'Designer.
InitializeComponent()
'Add any initialization after the
'InitializeComponent() call

End Sub

'Form overrides dispose to clean up the component
'list.
Protected Overloads Overrides _
Sub Dispose(ByVal disposing As Boolean)

If disposing Then
If Not (components Is Nothing) Then

components.Dispose()
End If

End If
MyBase.Dispose(disposing)

End Sub

'Required by the Windows Form Designer
Private components As _
System.ComponentModel.IContainer

'NOTE: The following procedure is required by the
'Windows Form Designer
'It can be modified using the Windows Form Designer.
'Do not modify it using the code editor.
Friend WithEvents Label1 As _
System.Windows.Forms.Label

278 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Friend WithEvents lblCatalogName As _
System.Windows.Forms.Label

Friend WithEvents lstCubes As _
System.Windows.Forms.ListBox

Friend WithEvents Label2 As _
System.Windows.Forms.Label

Friend WithEvents lstDimensions As _
System.Windows.Forms.ListBox

Friend WithEvents lstHierarchies As _
System.Windows.Forms.ListBox

<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()

Me.Label1 = New System.Windows.Forms.Label()
Me.lblCatalogName = New
System.Windows.Forms.Label()

Me.lstCubes = New System.Windows.Forms.ListBox()
Me.Label2 = New System.Windows.Forms.Label()
Me.lstDimensions = New
System.Windows.Forms.ListBox()

Me.lstHierarchies = New
System.Windows.Forms.ListBox()

Me.SuspendLayout()
'
'Label1
'
Me.Label1.Location = New System.Drawing.Point(8,
16)

Me.Label1.Name = "Label1"
Me.Label1.Size = New System.Drawing.Size(80, 16)
Me.Label1.TabIndex = 0
Me.Label1.Text = "Catalog Name:"
'
'lblCatalogName
'
Me.lblCatalogName.Location = New _
System.Drawing.Point(88, 16)

Manipulating Multidimensional Data 279

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

Me.lblCatalogName.Name = "lblCatalogName"
Me.lblCatalogName.Size = New
System.Drawing.Size(272, 23)

Me.lblCatalogName.TabIndex = 1
'
'lstCubes
'
Me.lstCubes.Location = New System.Drawing.Point(8,
56)

Me.lstCubes.Name = "lstCubes"
Me.lstCubes.Size = New System.Drawing.Size(120,
134)

Me.lstCubes.TabIndex = 2
'
'Label2
'
Me.Label2.Location = New System.Drawing.Point(8,
40)

Me.Label2.Name = "Label2"
Me.Label2.Size = New System.Drawing.Size(100, 16)
Me.Label2.TabIndex = 3
Me.Label2.Text = "Cubes:"
'
'lstDimensions
'
Me.lstDimensions.Location = New _
System.Drawing.Point(136, 56)

Me.lstDimensions.Name = "lstDimensions"
Me.lstDimensions.Size = New
System.Drawing.Size(120, 134)

Me.lstDimensions.TabIndex = 4
'
'lstHierarchies
'
Me.lstHierarchies.Location = New _
System.Drawing.Point(264, 56)
Me.lstHierarchies.Name = "lstHierarchies"
Me.lstHierarchies.Size = New
System.Drawing.Size(120, 134)

Me.lstHierarchies.TabIndex = 5
'
'Form1
'

280 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Me.AutoScaleBaseSize = New System.Drawing.Size(5,
13)

Me.ClientSize = New System.Drawing.Size(392, 195)

Me.Controls.AddRange(New
System.Windows.Forms.Control() _

{Me.lstHierarchies, Me.lstDimensions, Me.Label2, _
Me.lstCubes, Me.lblCatalogName, Me.Label1})

Me.FormBorderStyle = _
System.Windows.Forms.FormBorderStyle.FixedTool-
Window

Me.Name = "Form1"
Me.Text = "Example 1"
Me.ResumeLayout(False)

End Sub

#End Region

Private Sub Form1_Load(ByVal sender As System.
Object, _

ByVal e As System.EventArgs) Handles MyBase.Load
ReadCatalog()

End Sub

Public Function Connect()
Dim strConn As String

strConn = "Data Source= LOCALHOST; Provider=
MSOLAP;" _

& "Database=FoodMart 2000;UserId=;"
& "Password=;"

'create the COM object
objCatalog = CreateObject("ADOMD.Catalog")
'Connect to the database
objCatalog.ActiveConnection = strConn

End Function

Public Function ReadCatalog()
Connect()
lblCatalogName.Text = objCatalog.name

Manipulating Multidimensional Data 281

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

GetCubes()
End Function

Public Function GetCubes()
Dim Cube As Object
For Each Cube In objCatalog.CubeDefs

lstCubes.Items.Add(Cube.name)
Next

End Function

Public Function GetDimensions()
Dim Dimension As Object
lstDimensions.Items.Clear()

For Each Dimension In _
objCatalog.CubeDefs(lstCubes.SelectedItem).

dimensions
lstDimensions.Items.Add(Dimension.name)

Next
End Function

Public Function GetHierarchies()
Dim Hierarchy As Object
lstHierarchies.Items.Clear()
For Each Hierarchy In _
objCatalog.CubeDefs(lstCubes.SelectedItem).
Dimensions(_

lstDimensions.SelectedItem).Hierarchies
lstHierarchies.Items.Add(Hierarchy.UniqueName)

Next
End Function

Private Sub lstCubes_SelectedIndexChanged
(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _
lstCubes.SelectedIndexChanged

GetDimensions()

End Sub

Private Sub lstDimensions_SelectedIndexChanged _
(ByVal sender As System.Object, ByVal e As _

282 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

System.EventArgs) Handles _
lstDimensions.SelectedIndexChanged

GetHierarchies()
End Sub

End Class

Figure 9-7 shows the Visual Studio .NET Designer with

Form1 in design view:

Figure 9-8 shows the output of the sample code and the

Form1 object:

Manipulating Multidimensional Data 283

P
a
rt

II
I

Figure 9-7: The Visual Studio .NET Designer

TEAM LinG - Live, Informative, Non-cost and Genuine!

You can select a particular cube from the Cubes list box

to view a list of its dimensions in the Dimensions list

box. Each dimension may have one or more hierarchies

listed in the Hierarchies list box.

ADO MD Example

There is no ADO MD equivalent in ADO .NET. However,

it is expected that Microsoft will release some ADO MD

functionality that runs natively on the .NET Framework

with the next version of Analysis Services. For now, the

best way for us to continue programming Analysis Ser-

vices in .NET is to utilize ActiveX controls provided for

Analysis Services. Of course, you can use the OLEDB

.NET Data Provider and connect to the database through

the OLEDB Provider for OLAP. Even then, you will have

to write a lot of unmanaged code that will have a direct

impact on application performance since OLEDB Pro-

vider for OLAP runs on top of the PivotTable Service,

which is implemented as COM.

284 Chapter 9

Figure 9-8: A view of the OLAP database containing the
output of the Form1 object

TEAM LinG - Live, Informative, Non-cost and Genuine!

There are several ActiveX controls deployed with Analy-

sis Services. The one that is the most illustrative and

helpful is the CubeBrowser ActiveX control.

Using the CubeBrowser ActiveX Control

In this example, we look at how we can use the

CubeBrowser ActiveX control to view multidimensional

data inside client applications. There are several advan-

tages and disadvantages to using this control in your

applications.

The main advantage of the CubeBrowser control is that it

is straightforward and there is not much code needed to

populate it with data. In fact, all you need to specify are

the server that it should connect to and the cube that it

should display. This saves you the trouble of writing a lot

of unmanaged code that would have to go through the

COM interoperability services.

There are two main disadvantages to using this control:

First, keep in mind that the control is based on the COM

computing architecture. Although you may not visually

notice anything at design time, the .NET Common Lan-

guage Runtime wraps the ActiveX control inside several

COM interoperability service libraries when the applica-

tion runs. Your application may end up having a lot of

performance problems. Additionally, you will have a lot

of trouble deploying your application, especially if it is a

client-server application with multiple users. It would be

required for you to deploy and register the CubeBrowser

control on every client machine running the application.

Without a sophisticated setup program, this can be quite

a pain.

Although the disadvantages may seem to be enormous, I

believe that using this control is a much better approach

than using the OLEDB .NET Data Provider. As men-

tioned above, the control does not require you to write a

Manipulating Multidimensional Data 285

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

lot of code, which means that when the OLAP services

are introduced inside ADO .NET, you would only need to

delete the control, its references, and the other refer-

ences to the COM interoperability service libraries.

Then you can start writing managed code for the OLAP

services. This task is much less arduous than having to

convert unmanaged code.

Now that we have explored the pros and cons, let’s get to

work. In this example, you would be using the control on

a Windows Form object. To view the code for this exam-

ple, open the Example 2 folder under the 09-Examples

Windows Form project on the companion CD and open

the frmOLAPManip1 form object.

The first step is to add the control to your toolbox:

1. Open the General tab on the toolbox.

2. Right-click inside the tab and click the Customize

Toolbox option on the pop-up menu. This loads the
Customize Toolbox dialog.

3. The control is an ActiveX control and based on COM,
so select the COM Components tab. The dialog
populates a list of available ActiveX controls.

4. Scroll down the list and select the control called
OLAPCubeBrowser.CubeBrowser, as illustrated
in Figure 9-9.

286 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

5. Click the OK button. The CubeBrowser control is
added to the General tab of the toolbox.

The second step involves referencing ADO MD in your

application:

1. From the Project menu, click Add Reference. This
brings up the Add Reference window.

2. ADO MD is a COM library, so click on the COM tab
to list all the COM libraries registered on your
machine.

3. Click on the Microsoft ActiveX Data Objects

(Multi-dimensional) 2.7 Library COM library.
Click the Select button. This adds the library to the
Selected Components list box, as illustrated in Fig-
ure 9-10.

Manipulating Multidimensional Data 287

P
a
rt

II
I

Figure 9-9: Selecting the OLAPCubeBrowser.CubeBrowser
control

TEAM LinG - Live, Informative, Non-cost and Genuine!

4. Click the OK button. Visual Studio adds references
to the following libraries:

� ADODB: This is the legacy COM ADO library.

It is referenced automatically because ADO MD

requires ADO’s Connection object to connect to

data sources. Do not confuse ADO DB with the

ADO .NET classes found inside the Sys-

tem.Data namespace.

� ADOMD: This is the ADO MD class library that

is required by the CubeBrowser control.

The third step involves adding the control to the form

and writing some code.

1. Drag the CubeBrowser control from the General tab
onto the frmOLAPManip1 form. Visual Studio adds
references to the following libraries:

� AxOLAPCubeBrowser: This is a wrapper for

the CubeBrowser control. Visual Studio

288 Chapter 9

Figure 9-10: Adding a library to the Selected Components
list box

TEAM LinG - Live, Informative, Non-cost and Genuine!

automatically creates a wrapper for every

ActiveX control used in an application. This

allows your control to run in a managed .NET

environment, and it also facilitates your job as a

programmer since it exposes the control as a

fully featured Windows Form Control. This is

something that some developers pay no attention

to. It is important for you to understand that this

wrapper class library is going through COM

interoperability services at run time.

� MSComctLib: This is a COM class library that

contains the implementation and definition of the

Microsoft Windows Common Controls. Since

some of these controls are used in the implemen-

tation of the CubeBrowser, this library is also

automatically referenced.

� OLAPCubeBrowser: This is the class library

for the CubeBrowser control.

� stdole: The COM architecture provides a stan-

dard implementation of general services, such as

fonts, control locations, and positions of OLE

components through interfaces. For example, a

standard implementation of font objects is pro-

vided by the IFontDisp interface. The functional-

ity is encapsulated by the StdFont object found

within the stdole class library.
These interfaces are implemented inside the
stdole class library. This library is automatically
referenced in the background when each COM
component is compiled. Therefore, it is refer-
enced automatically by Visual Studio.

2. Open the Property window for the control and
rename it AxCubeBrowser.

The fourth step involves adding a few tweaks to the user

interface and writing the code that will manipulate the

CubeBrowser.

Manipulating Multidimensional Data 289

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

The CubeBrowser and the ComboBox would need to

connect to and retrieve data from the database. For this,

we will need a global connection string, a connection

object, and a procedure to connect to the database. Add

the following declarations in the code module to the

form:

Dim strConn As String
Dim objADOConn As Object

A procedure to connect to the database is implemented

like this:

Sub Connect()
'Connection string
strConn = "Data Source= LOCALHOST; Provider=
MSOLAP;" _

& "Database=FoodMart 2000;UserId=;" _
& "Password=;"

'Creates an ADO connection object.
objADOConn = CreateObject("ADODB.Connection")

With objADOConn
'Sets the connection string
.ConnectionString = strConn
'Connect to the database
.open()

End With
End Sub

Add a ComboBox control to the form object and name it

cbxCubeList. This control will hold the list of cubes pres-

ent in the OLAP database. We already know how to do

this, so let’s go ahead and code a procedure that will do

it. The following code snippet is the implementation of

the GetCubes() procedure and the call to Connect() and

GetCubes() in the form’s Load event:

290 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Sub GetCubes()
'Object to hold the Catalog object
Dim objCatalog As Object
'Object to hold one particular cube
Dim Cube As Object

'Instantiates a catalog object
objCatalog = CreateObject("ADOMD.Catalog")

'Set up the combo box
With cbxCubeList

.Items.Clear()

.DropDownStyle = ComboBoxStyle.DropDownList

.Sorted = True
End With

With objCatalog
'Connect the catalog object to the (database)
.ActiveConnection = strConn
'Populate the drop down
For Each Cube In .CubeDefs

With cbxCubeList
.Items.Add(Cube.name)

End With
Next

End With

'Free memory
objCatalog = Nothing

End Sub

Private Sub frmOLAPManip2_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load

Connect()
GetCubes()

End Sub

User interface is everything! Let’s add some code to

help our controls resize seamlessly:

Manipulating Multidimensional Data 291

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

Private Sub frmOLAPManip1_Resize(_
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Resize

With AxCubeBrowser
.Left = 1
.Width = Me.ClientSize.Width - 10
.Height = Me.ClientSize.Height -
cbxCubeList.Height - 10

End With
With cbxCubeList

.Width = Me.ClientSize.Width
End With

End Sub

When the user selects a cube from the drop-down list,

we want the CubeBrowser control to show information

about the cube. This logic is implemented inside the

cbxCubeList’s SelectedIndexChanged event handler:

Private Sub cbxCubeList_SelectedIndexChanged(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles cbxCubeList.SelectedIndexChanged

With AxCubeBrowser
'Connect the browser to the database
'and specify the cube that you want to
'browse.
.Connect(objADOConn, cbxCubeList.SelectedItem)

End With

End Sub

This is all that is required to browse a cube using the

CubeBrowser! As you can see, not much logic or

unmanaged code is required. So I recommend that you

take this approach for cube browsing.

The following code snippet is the full implementation of

the frmOLAPManip1 class:

292 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Public Class frmOLAPManip1
Inherits System.Windows.Forms.Form

Dim strConn As String
Dim objADOConn As Object

#Region " Windows Form Designer generated code "

Public Sub New()
MyBase.New()

'This call is required by the Windows Form
'Designer.
InitializeComponent()

'Add any initialization after the
'InitializeComponent() call

End Sub

'Form overrides dispose to clean up the component
'list.
Protected Overloads Overrides Sub Dispose
(ByVal disposing As Boolean)
If disposing Then

If Not (components Is Nothing) Then
components.Dispose()

End If
End If
MyBase.Dispose(disposing)

End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the
'Windows Form Designer
'It can be modified using the Windows Form Designer.
'Do not modify it using the code editor.
Friend WithEvents AxCubeBrowser As
AxOLAPCubeBrowser.AxCubeBrowser

Friend WithEvents cbxCubeList As
System.Windows.Forms.ComboBox

<System.Diagnostics.DebuggerStepThrough()> Private Sub

Manipulating Multidimensional Data 293

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

InitializeComponent()
Dim resources As System.Resources.ResourceManager

= New System.Resources.ResourceManager
(GetType(frmOLAPManip1))

Me.AxCubeBrowser = New
AxOLAPCubeBrowser.AxCubeBrowser()

Me.cbxCubeList = New
System.Windows.Forms.ComboBox()

CType(Me.AxCubeBrowser, System.ComponentModel.
ISupportInitialize).BeginInit()

Me.SuspendLayout()
'
'AxCubeBrowser
'
Me.AxCubeBrowser.Enabled = True
Me.AxCubeBrowser.Location = New
System.Drawing.Point(0, 24)
Me.AxCubeBrowser.Name = "AxCubeBrowser"
Me.AxCubeBrowser.OcxState =
CType(resources.GetObject("AxCubeBrowser.
OcxState"), System.Windows.Forms.AxHost.
State)

Me.AxCubeBrowser.Size = New
System.Drawing.Size(448, 384)

Me.AxCubeBrowser.TabIndex = 0
'
'cbxCubeList
'
Me.cbxCubeList.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.Simple

Me.cbxCubeList.Name = "cbxCubeList"
Me.cbxCubeList.Size = New System.Drawing.Size(448,
21)

Me.cbxCubeList.TabIndex = 1
'
'frmOLAPManip1
'
Me.AutoScaleBaseSize = New System.Drawing.Size(5,
13)

Me.ClientSize = New System.Drawing.Size(456, 411)
Me.Controls.AddRange(New System.Windows.Forms.
Control() {Me.cbxCubeList, Me.AxCubeBrowser})

Me.Name = "frmOLAPManip1"
Me.Text = "Olap Example 1"
CType(Me.AxCubeBrowser, System.ComponentModel.

294 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

ISupportInitialize).EndInit()
Me.ResumeLayout(False)

End Sub

#End Region

Private Sub frmOLAPManip2_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load

Connect()
GetCubes()

End Sub

Private Sub frmOLAPManip1_Resize(_
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Resize

With AxCubeBrowser
.Left = 1
.Width = Me.ClientSize.Width - 10
.Height = Me.ClientSize.Height -

cbxCubeList.Height - 10
End With
With cbxCubeList

.Width = Me.ClientSize.Width
End With

End Sub

Sub Connect()
'Connection string
strConn = "Data Source= LOCALHOST; Provider=

MSOLAP;" _
& "Database=FoodMart 2000;UserId=;" _
& "Password=;"

'Creates an ADO connection object.
objADOConn = CreateObject("ADODB.Connection")

With objADOConn
'Sets the connection string
.ConnectionString = strConn

Manipulating Multidimensional Data 295

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Connect to the database
.open()

End With
End Sub

Private Sub cbxCubeList_SelectedIndexChanged(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles cbxCubeList.SelectedIndexChanged

With AxCubeBrowser
'Connect the browser to the database
'and specify the cube that you want to
'browse.
.Connect(objADOConn, cbxCubeList.SelectedItem)

End With
End Sub

Sub GetCubes()
'Object to hold the Catalog object
Dim objCatalog As Object
'Object to hold one particular cube
Dim Cube As Object

'Instantiates a catalog object
objCatalog = CreateObject("ADOMD.Catalog")

'Set up the combo box
With cbxCubeList

.Items.Clear()

.DropDownStyle = ComboBoxStyle.DropDownList

.Sorted = True
End With

With objCatalog
'Connect the catalog object to the (database)
.ActiveConnection = strConn
'Populate the drop down
For Each Cube In .CubeDefs

With cbxCubeList
.Items.Add(Cube.name)

End With
Next

End With

296 Chapter 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Free memory
objCatalog = Nothing

End Sub

Protected Overrides Sub Finalize()
objADOConn = Nothing
MyBase.Finalize()

End Sub
End Class

Summary

In this chapter you read about the best practices when it

comes to programming OLAP applications in the .NET

Framework. It is advisable that you use wrapper classes

for your existing COM and ActiveX components rather

than try to embed unmanaged code into your applica-

tions. There are many indications that future versions of

SQL Server will run natively on the .NET Framework,

and by then, we expect to have some sort of data pro-

vider for the Analysis Services.

Manipulating Multidimensional Data 297

P
a
rt

II
I

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Appendix A

The Object-Oriented
Features of VB .NET

In This Appendix

This appendix provides an overview of object-oriented

programming and covers the features in VB .NET that

allow developers to write object-oriented applications for

the .NET Framework.

Topics discussed are:

� Overview of OOP support in Visual Basic in the past

� Object-oriented programming concepts

� Classes and objects

� Members, properties, and methods

� Inheritance and polymorphism

� Development of a small object-oriented application

VB .NET is an Object-Oriented
Language

Visual Basic .NET is an object-oriented programming

language. In terms of the type of complex objects that

can be built using VB .NET, the language looks nothing

like what its predecessors offered to developers. The

strategy behind the creation of VB .NET was “keep it

simple, make it more powerful.” With this in mind,

299

TEAM LinG - Live, Informative, Non-cost and Genuine!

Microsoft released a product that was as easy and intu-

itive to use as VB 6, yet as powerful as the Visual C++

architecture. Object-oriented programming opens a lot of

doors for traditional VB programmers and takes them to

a whole new world and programming paradigm.

This reality is so evident today that many C++ program-

mers who want to develop for the .NET Framework are

moving away from Visual C++ and adopting Visual Basic

.NET and Visual C# as the languages of choice.

In a mission-critical web application, VB .NET can be

used to build the powerful components of the business

layer. When it comes to the development of ASP .NET

pages, the developer has a choice between VB .NET and

C#. With these two languages, the Internet becomes an

object-oriented environment powered by the .NET

Framework.

OOP Support in Visual Basic 5 and 6

Microsoft started implementing limited support for

object-oriented programming in Visual Basic 5. The

introduction of class modules allowed developers to

create classes that could be used as complex data types

in Visual Basic code. This functionality made VB a better

OOP language. However, the classes that one could

create were very limited because they did not support

the more advanced concepts of OOP, such as inheritance

and polymorphism.

Shortly after the release of its Component Object Model

(COM) standard, Microsoft came out with Visual Basic 6.

VB 6 extended the limited object-oriented programming

functionality that was present in VB 5.

300 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

Object-Oriented Programming
Concepts

Before you can exploit the full power of the object-

oriented features in VB .NET, it is important for you to

know exactly what object-oriented programming is and

understand some of its major concepts.

Classes and Objects

Classes and objects are at the core of the object-oriented

programming paradigm. They form the basis of every-

thing that goes on during program design and execution.

Before you can understand the fundamental concepts of

classes and objects, it is important to know a little about

their roots from a computer science perspective.

In computer science, a data type refers to a mathematical

set containing values of the same sort. A sort, in this

case, is a defined number of operations that can be con-

ducted on a particular value. For example, you can add,

multiply, divide, and subtract all values of the type Inte-

ger with some exception rules. You cannot do these

operations on values of type Boolean. This is because

Boolean values belong to the Boolean set while the Inte-

ger values belong to the Integer set. Such basic sets of

values are called primitive data types.

Advances in computing, pushed by pressure from busi-

ness data processing, required that data types be more

complex than the primitive types. This was the reason

for the emergence of composite data types, like arrays,

lists, and records.

Programming language linguistics went further. People

started to think about the feasibility of having one data

type that could incorporate a set of things—tangible

entities, not just simple values or lists of values.

The Object-Oriented Features of VB .NET 301

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Object-oriented programming, the idea of classes and

objects, grew out of this thought. The definitions for

object and classes are two simple phrases:

� An object is a programmer-defined data type.

� A class is a module of code that defines an object.

The OOP paradigm provides the developer with a rich

set of tools and standards that can be used to manipulate

and work with objects more easily. Like all entities

around you, objects can have attributes and behaviors.

The most interesting of all is that you, the programmer,

define these attributes and behaviors through classes.

They can be as complex, as clever, or as obtuse as you

want them to be.

Implementing Classes in VB .NET

Everything in VB .NET is an object. Whether it is a form

or a control, the VB .NET entity provides the developer

with a rich set of attributes, methods, and events to work

with.

In the next few sections, we will walk through the devel-

opment and consumption of a simple class using VB

.NET. The class does not have a commercial purpose; it

is simply to teach you the practice of OOP in VB .NET.

You will notice that the class expands as we go further

into the chapter. This is an attempt to get you up and

running quickly in your ultimate goal to develop classes.

We cover the concepts of OOP by example. The project

that is used for this example is the AppendixOne.sln

solution provided on the companion CD-ROM with this

book.

Assuming that you have correctly installed Visual Basic

.NET, load the development environment. The view

should be similar to that illustrated in Figure A-1.

302 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

Planning Ahead

The project you are about to create does something quite

simple. It loads a form with two input controls into which

you enter some information about your favorite cus-

tomer. Then, it creates a Customer object and assigns

these attributes to it.

To achieve this amazing feat, you are going to work with

two main objects, a visual form and a non-visual class.

The forms you program with in VB .NET are also objects

instantiated from classes, but these classes are built into

the .NET Framework Common Language Runtime to

facilitate your job as a web developer. There are other

classes in the CLR that you will learn about later in this

book.

The Customer class is the primary focus of the following

section because you are going to walk through its design

The Object-Oriented Features of VB .NET 303

A
p
p
e
n
d
ix

Figure A-1: The Visual Studio .NET development environment

TEAM LinG - Live, Informative, Non-cost and Genuine!

and implementation while learning the ropes of object-

oriented programming.

As we go along in this appendix, you will be able to see

how objects are created and used in VB .NET.

Creating a Class

Before we go into creating the form, which is a quite

simple task, let’s take a good look at the creation of a

class. First, create a new Visual Basic .NET Windows

Application project. Save it to a convenient location and

name it AppendixOneExample.

Setting Up the GUI

In this section, you will prepare the user interface that

will be used with the Customer object. This is the only

means through which the user can gain access to the

object and its attributes.

1. The new solution project loads a form by default.
Change the form’s name to frmExample. Click on
the form to give it focus.

2. From the Windows Forms tab of the toolbox pane,
drop a Label control onto the form. Name it lblTitle,
align it properly, and set its Text property to Title.

3. From the Windows Forms tab of the toolbox pane,
drop another Label control onto the form. Name it
lblFirstName, align it properly, and set its Text
property to First Name.

4. To the left of the newly added control, drag and drop
a TextBox control onto the frmExample. Name it
txtFirstName and empty its Text property. This is
used as the input control for the customer’s first
name.

304 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

5. Copy and paste lblFirstName and txtFirstName onto
the window. Align the pasted controls just below the
previous ones. Rename the label to lblLastName

and the textbox to txtLastName.

6. Paste the two controls onto the form again. This
time, label the two controls lblAddress and
txtAddress, respectively. Set the text property of
lblAddress to Address. txtAddress is the input con-
trol for the customer’s address. Set its MultiLine
property to True.

7. Below txtAddress, add a command button. Name it
cmdInstantiate, and label it Instantiate Cus-

tomer. This is the button that will trigger the cre-
ation of a Customer object with the input values on
frmExample.

The frmExample form should look similar to the illustra-

tion in Figure A-2. It is a good idea to play around with

some of the properties that the form object has in VB

.NET. This is not our focus here, so let’s move on.

The Object-Oriented Features of VB .NET 305

A
p
p
e
n
d
ix

Figure A-2: The frmExample form

TEAM LinG - Live, Informative, Non-cost and Genuine!

Loading a New Empty Class

The user interface that instantiates and consumes the

object is ready. In this section, you will create a new,

empty class and add it to the project. If you are accus-

tomed to creating class modules in Visual Basic 6, this

task is not new to you. Follow these steps to create and

add a new class to AppendixOneExample:

1. From the File menu, click the Add New Item

option.

2. In the Add New Item dialog, illustrated in Figure A-3,
you are given a choice to select the type of new item
that you want to create. In the Categories tree list,
select the Local Project Items node. The items for
that particular category are listed in the Templates
list on the right. Click on the Class item.

3. In the Name field, specify the name for the new
class. Call it Customer.vb.

306 Appendix A

Figure A-3: The Add New Item dialog

TEAM LinG - Live, Informative, Non-cost and Genuine!

4. Click the Open button to load the new class as part
of the project. The code window for the class opens
with the following code:

Public Class Customer
End Class

Public Class Customer is the statement that declares the

Customer class. The End Class statement is the last

statement in the chunk of code that is part of the class.

Anything outside these two statements is not part of the

class. As illustrated in Figure A-4, the Solution Explorer

shows the newly added Customer class.

The class is expanded as object-oriented programming

concepts are introduced in the subsequent pages.

Properties and Members

Properties and members are the two most important

characteristics that an object has. You already learned

that an object is a complex data type made of simpler

data types or even more complex objects. Properties and

members define the amount and type of values that an

object can hold.

The Object-Oriented Features of VB .NET 307

A
p
p
e
n
d
ix

Figure A-4: The Solution Explorer showing
the Customer.vb class

TEAM LinG - Live, Informative, Non-cost and Genuine!

A member is often referred to as a member variable. It is

a variable of any type that is initialized as part of the

object when it is instantiated. An object’s member vari-

ables have object scope only; they cannot be used nor

referenced, and do not exist outside the object’s defini-

tion, which is the class. An example of a member variable

is a string containing the first name of a customer. Mem-

ber variables are used for the internal process of the

object. Its content is usually hidden by a technique called

encapsulation, which is covered later in this appendix.

A property is an attribute that an object has. Similar to a

member, a property can hold different values of the same

type. However, in a properly planned object-oriented

application, properties are used to encapsulate—that is,

to hide a member’s value. At other times, they provide a

better visual presentation of an object’s data to a user.

This might be the case when a user reads a property

called name, which is, in fact, the concatenated result of

the firstname and lastname member variables of an

object.

A user usually sets attributes for an object. It is, there-

fore, fair to draw a conclusive argument on the relation-

ship of properties and members. The members are the

data values that the object contains, while the properties

are the information obtained from these values. This

relationship is illustrated in Figure A-5. As can be per-

ceived, the properties form an interface between any

calling application and an object. Values for the internal

processes of the object are stored in its member vari-

ables. Internal operations are carried out by member

functions, while methods are also part of the interface.

Methods are covered later.

308 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing Members and Properties for
the Customer Object

Now that the fundamental and conceptual bases of mem-

bers and properties have been established, you are ready

to implement members and properties for the class that

serves as the code base for instantiating Customer

objects.

Once instantiated, the Customer object will be able to

perform the following tasks:

� Allow users to assign values to its attributes. The

following attributes must be available:

� title: Title of the customer (i.e., Dr. for Doctor)

� firstName: First name of the customer (i.e.,

Terrence)

� lastName: Last name of the customer (i.e.,

Joubert)

� address: Address of the customer (i.e., 78 Drake

Street, MA 02120)

The Object-Oriented Features of VB .NET 309

A
p
p
e
n
d
ix

Figure A–5: The relationship between member variables and properties

TEAM LinG - Live, Informative, Non-cost and Genuine!

� salutation: The full name and title for the cus-

tomer (i.e., Dr. Terrence Joubert)

� Provide a generic structure and architecture from

which future objects can inherit

Members

Adding members to a VB .NET class is as simple as

declaring variables in any module of Visual Basic code.

The syntax for declaring a member variable is:

access_specifier variable_name [As DataType]

access_specifier provides instructions to the compiler

about the level of access that the member variable

should have. Note that the access_specifier keywords

that are described here apply to all types of entities that

one can create inside a class. The keywords are three

possible access levels for a class member variable.

� Private: This keyword denotes that the member

variable is available to the code in that particular

class only. Functions and procedures inside the class

can reference this variable. Nowhere else outside the

class or inside its inherited children will you be able

to reference a private member variable.

� Protected: This keyword denotes that the member

variable is available to the class in which it is

declared and all the classes that inherit from it. Func-

tions and procedures inside the class Dog inherited

from the class Mammal are able to reference a Mam-

mal member variable of access specifier Protected.

Inheritance is covered later in this chapter.

� Public: This keyword denotes that the member vari-

able can be referenced anywhere in the program. It

acts like a property, in the sense that its value can be

read and written to like that of any normal variable.

In well-written object-oriented applications, the

310 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

Public access specifier is not used on member vari-

ables of classes. Doing so will violate the rules of

encapsulation of object data. After instantiating a Dog

object inside a code module, it is possible to make it

bark by calling its Bark() method of Public access

specifier, but it must be impossible to change the

dog’s voice, because then it will lose its uniqueness

and personality.

variable_name is the identifier of the member variable. It

must follow the same legal rules for all identifiers in the

Visual Basic language syntax.

The [As DataType] clause is the data type of the member

variable. It is optional to specify a data type for a mem-

ber. Not doing so will cause VB .NET to mark the vari-

able as having the type System.Object, and doing so will

severely affect the performance of the object instantiated

from the class. For this reason, I strongly recommend

specifying a defined data type and leave System.Object

for variables that are not predetermined.

Customer Members

From the list of attributes that we defined for the cus-

tomer earlier, we now have a very clear idea of what

members the customer will have.

Open the code module for the Customer.vb class. Just

after the Public Class Customer statement, type the fol-

lowing lines of code:

Private strTitle As String
Private strFirstName As String
Private strLastName As String
Private strAddress As String

This declares four member variables for the Customer

class. The names of the variables are quite

self-descriptive in relation to their purposes.

The Object-Oriented Features of VB .NET 311

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Properties

The properties that a Customer class has are the same

attributes that were outlined above:

� title

� firstName

� lastName

� address

� salutation

The first step to adding a property to a class is to deter-

mine what information the property will give to an end

user or developer who happens to be working with the

object. Then comes the issue of how the property should

be used. A property may be read-only or allow read and

write. The details about the properties of the Customer

class are listed in Table A-1.

Table A-1: The properties and their content

Property
Name

Purpose Content Usage

title Title of the
customer

strTitle member variable Read and
write

firstName First name of
the customer

strFirstName member
variable

Read and
write

lastName Last name of
the customer

strLastName member
variable

Read and
write

address Address of
the customer

strAddress member
variable

Read and
write

salutation Salutation for
the customer

strTitle + <space> +
strFirstName + <space>
+ strLastName

Read-only

Implementing Properties

A property is implemented using a type of procedure

called the Property procedure. Property procedures are

312 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

special because they hold two other procedures inside

their code body. These are the Get and Set procedures.

To better understand the functionality of Property proce-

dures, it is important to understand their syntax.

Property Procedures

<access_modifier> Property <property_name>() As
<data_type_x>
Get

‘Code module for Get
End Get

Set (ByVal <identifier> As < data_type_x >)
‘Code module for Set

End Set
End Property

The syntax for the Property procedure is very interest-

ing. It is important that you understand each part of it.

<access_modifier> Property <property_name>() As
<data_type_x>

This part of the syntax is the declaration of the proce-

dure. Notice the End Property statement that terminates

the code body of the procedure. As you have noticed, the

Property procedure is declared similar to other proce-

dures that you are accustomed to. The only exception is

the use of the property statement instead of procedure.

The <property_name> clause defines a name for the

property. This name must conform to the legal identifier

names allowed in Visual Basic .NET.

<data_type_x> defines a data type for the particular

property. This can be of any legal data type.

Get Procedure

Get
‘Code module for Get

End Get

The Object-Oriented Features of VB .NET 313

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Get is a special procedure that returns the value of the

property. The Get procedure is automatically executed

when the calling code attempts to retrieve a property

value with the statement:

Object.Property

Any logic can be coded inside the Get procedure, given of

course that the logic makes sense in the context of

retrieving a property value. Anything that happens when-

ever the calling code retrieves the value of a property

must be coded inside the Get procedure.

Set Procedure

Set (ByVal <identifier> As < data_type_x >)
‘Code module for Set

End Set

The Set procedure is called whenever the calling code

attempts to assign a value to a property with this

statement:

Object.property = anyValue

<identifier> defines any valid identifier that you may

specify. This identifier references the value that is

assigned to the property. In the case of the calling state-

ment above, <identifier> would reference anyValue.

The two should be of the same data type specified in

< data_type_x >.

As with the Get procedure, the code body of the Set pro-

cedure can hold any form of logic. The most relevant

however, is validating the value before assigning it to the

property.

The Set procedure also plays a key role in the case of a

read-only property. To specify a property as read-only, do

not perform an assignment inside the Set procedure. To

create a better user interaction, you may opt to pop up a

message that tells the user or developer that a value

314 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

cannot be assigned to the property because it is

read-only. If you do not wish to have a user-friendly Set

property procedure, use the access modifier ReadOnly

for the property and do not specify a Set procedure.

Applying the Concepts

Open the code window for the Customer class. Just after

the declaration of the member variables, type the follow-

ing code to define the Title, FirstName, LastName, and

Address properties for the Customer class:

'Begin Properties
'Property Procedure for the Title property
Public Property Title() As String

Get
Return strTitle

End Get

Set(ByVal Value As String)
strTitle = Value

End Set
End Property
''

'Property Procedure for the FirstName property
Public Property FirstName() As String

Get
Return strFirstName

End Get

Set(ByVal Value As String)
strFirstName = Value

End Set
End Property
''

'Property Procedure for the LastName property
Public Property LastName() As String

Get
Return strLastName

End Get

The Object-Oriented Features of VB .NET 315

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Set(ByVal Value As String)
strLastName = Value

End Set
End Property
''

'Property Procedure for the Address property
Public Property Address() As String

Get
Return strAddress

End Get

Set(ByVal Value As String)
strAddress = Value

End Set
End Property
''
'End Properties

The Get and Set code is very straightforward. When the

calling code retrieves the value of the property, the Get

procedure returns the value in the corresponding mem-

ber variable. When the calling code assigns a value to the

property, the Set procedure assigns the value of the

assigned value of the corresponding member variable.

This method of hiding the value of the member variables

is called encapsulation. It ensures that the data inside the

object is secure at all times. For example, using Property

procedures, you can perform a complex security check

on the current user of the application before allowing this

individual to either retrieve or assign a value to a class

member.

The Property procedure for the Salutation property has a

little more overhead. Salutation is read-only, meaning

that you cannot assign it a value. Another issue is that it

is a computed property. It returns the value of more than

one member variable. Write the code body for the Saluta-

tion Property procedure as the following:

316 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

'Property Procedure for the Salutation property
ReadOnly Property Salutation() As String

Get
With Me

'compute the salutation and return it
Return .Title + ". " + .FirstName + " "
+ .LastName

End With
End Get

End Property
''

This code marks the property as read-only and returns

the salutation of the customer. A typical value for the Sal-

utation property would be Mr. John Doe.

Testing the Results

In this section, we instantiate a Customer object and use

the controls on frmExample to input values into proper-

ties and see how it functions.

1. Open the frmExample Windows Form object.

2. Double-click the cmdInstantiate command button
control to get to its click() event handler. This event
is triggered when the button is clicked. Add the fol-
lowing code to the event handler:

Dim cust As New Customer()
With cust

.Title = Me.txtTitle.Text

.FirstName = Me.txtFirstName.Text

.LastName = Me.txtLastName.Text()

.Address = Me.txtAddress.Text
MsgBox(.Salutation & vbCr & " Lives at: " &

vbCr & .Address)
End With
cust = Nothing

When the button is clicked, a new Customer object is

instantiated and its properties are assigned the values

from the input controls on the window. A message box

appears, telling you the salutation and address of the

The Object-Oriented Features of VB .NET 317

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

customer. Then the Customer object is released from

memory.

3. Run the example, input some information in the con-
trols, and click the button. The result should be
something like that illustrated in Figure A-6.

Methods

Methods are the elements of a class that implement the

particular behaviors of the resulting object. At first sight,

methods may seem like simple functions inside the code

module of a class. In fact, they are, but by the strict rules

of OOP, every method must provide one specific behavior

to an object. A behavior in this case is an action that an

object can take or a reaction that is a response to the sur-

rounding environment. Therefore, methods must be

carefully planned and their actions properly coordinated.

Inside a class, a method is implemented similar to a mod-

ular regular or global function. In fact, a method can take

the form of a function or a procedure, depending on what

you intend to achieve. If you hope to return a value, use

functions; otherwise, a procedure approach will do the

job.

318 Appendix A

Figure A-6: The result of the sample application

TEAM LinG - Live, Informative, Non-cost and Genuine!

Inheritance

The principle of inheritance is that a class can be derived

from another class. This relationship results in objects

that inherit the properties, members, and methods of

other objects. A good example is to think of the class

Dog as one that is derived from the class Mammal. A

Dog object would behave similar to a Mammal and, in

fact, have all the attributes of the Mammal, but its prop-

erties and methods are somewhat specific to “doggy”

behavior. In a scenario of developing an application that

incorporates a lot of related classes (Dolphin, Human,

Ape, Tiger), such a principle allows the developer to code

a generic class—Mammal, from which the other classes

can inherit behaviors and properties. The chain of inheri-

tance can go further to include the classes illustrated in

Figure A-7:

Unlike its predecessors, the VB .NET object-oriented

architecture supports the full power of inheritance, like

C++, C#, and Java. This has helped it become the

favorite .NET language among developers who prefer

The Object-Oriented Features of VB .NET 319

A
p
p
e
n
d
ix

Figure A-7: A chain of inheritance

TEAM LinG - Live, Informative, Non-cost and Genuine!

development speed and ease of use over the classical

taste of the other languages.

In VB .NET, the following rules apply to inheritance:

� A class can be optionally marked as non-inheritable,

meaning that no other class can be derived from it.

This is done using the NotInheritable keyword to

declare the class:

<access_modifier> NotInheritable Class <classname>
‘Class code body

End Class

� A derived class can implement a method that over-

rides or extends the same functionality of the same

method of its parent class.

� A class can be derived from one class only. There is

no support for multiple inheritance.

� A class can also be declared as MustInherit. In this

case, your code cannot consume its instance directly

but rather consumes the instance of a class derived

from it.

Implementing Inheritance in VB .NET

The syntax for implementing an inherited class is:

Public Class ClassX
Inherits ClassY
' Overrides, overloads, and extends members
' inherited from the base class

End Class

Notice the use of the Inherits keyword after the class

declaration. This tells VB .NET that ClassX is derived

from ClassY. VB .NET does not support multiple inheri-

tance, so it is impossible to have two Inherits

statements.

320 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

After the base class is specified, you have the option to

override or overload methods and extend the base class

members.

Inheritance at Work

In this section, we attempt to extend the AppendixOne-

Example solution to demonstrate the principle of inheri-

tance at work. Load the solution into the development

environment.

The Problem and the Solution

Upon testing the current functionality of the application,

you have found that one thing is left out. For later analy-

sis purposes, you want to obtain the customer’s zip code

and state of residence. Since you hope to market the

application internationally, requiring a zip code and state

in the current customer functionality will cause trouble

with international customers. You decide to create a new

USCustomer class that inherits generic customer attrib-

utes and behaviors, while providing an extended func-

tionality for American customers.

1. The first thing you need to do is change two things
with the Customer class. Change the declaration of
member variable strAddress, setting its access modi-
fier to Protected. This will allow the code in any
inherited class to reference this variable directly.
Then, place the keyword Overridable between the
keywords Public and Property in the declaration sec-
tion of the Address property. It should now look like
this:

Protected strAddress As String
‘Other parts of the class here

Public Overridable Property Address() As String
Get

Return strAddress
End Get
Set(ByVal Value As String)

The Object-Oriented Features of VB .NET 321

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

strAddress = Value
End Set

End Property

2. Create a new class and name it USCustomer. Then
enter the following code:

Public Class USCustomer
Inherits Customer

Private strZipCode As String
Private strState As String

Public Property zipCode() As String
Get

Return strZipCode
End Get

Set(ByVal Value As String)
strZipCode = Value

End Set
End Property

Public Property state() As String
Get

Return strState
End Get

Set(ByVal Value As String)
strState = Value

End Set
End Property

'The new address property overrides the one in
'Customer
Public Overrides Property Address() As String

Get
Return strAddress & " " & strState & " " &
strZipCode

End Get
Set(ByVal Value As String)

strAddress = Value
End Set

End Property
End Class

322 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

There are a couple of interesting things that are happen-

ing in this class. First, we declare two member variables

to hold values for the zip code and state, respectively.

Then, the zipCode and State properties are added. The

most interesting inheritance feature in this class is over-

riding the Address property of the base Customer class.

The keyword Overrides is used to perform this task. In

order to use this keyword on an entity in a derived class,

the keyword Overridable must be specified on the decla-

ration of that particular entity in the base class. Over-

riding methods and member variables work the same

way as overriding properties in Visual Basic .NET. This

allows you to call one method that may perform different

actions, depending on which type of object you are calling

it on. This feature is called polymorphism in object-

oriented programming.

Now you are ready to test the new USCustomer class.

1. Open the frmExample form object.

2. Add two pairs of label and textbox controls to the
form. Name the labels lblZipCode and lblState and
set their Text property accordingly. Name the text
boxes txtZipCode and txtState.

3. Open the code body of the click() event handler for
the cmdInstantiate command button. Replace the
code in that handler with the following:

Private Sub cmdInstantiate_Click(ByVal sender As
System.Object, _

ByVal e As System.EventArgs) Handles
cmdInstantiate.Click

Dim USCust As New USCustomer()

With USCust

.Title = Me.txtTitle.Text

.FirstName = Me.txtFirstName.Text

.LastName = Me.txtLastName.Text

.Address = Me.txtAddress.Text

The Object-Oriented Features of VB .NET 323

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

.zipCode = Me.txtZipCode.Text

.state = Me.txtState.Text
MsgBox(.Salutation & vbCr & " Lives at: " &

vbCr & .Address)

End With

USCust = Nothing

End Sub

The code does only a few new things: instantiates a new

USCustomer object and assigns the appropriate values to

its State and zipCode properties.

Summary

In this appendix, you have explored the features of Visual

Basic .NET that make it an object-oriented programming

language. VB .NET, an OOP language, is as powerful as

Visual C++ and Visual C#.

324 Appendix A

TEAM LinG - Live, Informative, Non-cost and Genuine!

Appendix B

Database
Normalization

In This Appendix

This appendix provides a definition of normalization and

explains the process of normalization.

Normalization

Normalization refers to a series of steps taken to ensure

the most efficient relational structure of a database. The

process usually involves the division of one existing data-

base table into two or more tables and maintaining the

proper relationship patterns between them. Therefore, a

modification to one field in a table that is part of a nor-

malized set of tables propagates throughout the other

tables in the set using the defined relationships.

Note: Notice the use of the word “propagate.” It
does not mean that the data in the modified field
physically moves to any other field. It simply means
that the other tables easily reference the data
because it is related to them.

325

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Normalization Process

The formal process of normalization centers around the

concepts of some defined normal forms that the database

designer can use to achieve a good relational structure.

The normal forms define the logical steps that are used

to normalize database tables. In the following sections,

the concepts defined by each normal form are covered

along with a good example of the normalization process.

The concepts are defined and taught in the context of

using a real-world example. The example is of no com-

mercial value; its purpose is for the teaching of a concep-

tual topic.

Here is the scenario. We have a database table that

stores data about orders made by customers. This table

is illustrated in Figure B-1.

The application software that uses this table for read and

write purposes has been experiencing performance trou-

bles lately. This table requires normalization. We will use

it as an example to illustrate the process of

normalization.

326 Appendix B

Figure B-1: Customer orders data

TEAM LinG - Live, Informative, Non-cost and Genuine!

The First Normal Form

The First Normal Form is the first step to normalizing a

table. When a table has undergone this step, it is referred

to as being in the First Normal Form, or 1NF. From look-

ing at the layout of the table in Figure B-1, three things

are easily noticeable: repeating groups, object inconsis-

tency, and storage space.

Repeating Groups

The table is repeating many of the same values. For

every order detail, the user must enter the information

for the order and the customer. For an order with 20 or

more items, this is a daunting task.

Furthermore, there is the risk of a user making a mis-

take in typing the product name into the ProductDescrip-

tion field. If you retrieve a report on that particular

product, you will not be presenting the right information

because your filter for the query hinges on the Product-

Description text field. If the query filters retrieved data

for Linux as the ProductDescription, records with Linx

are filtered out of the retrieved rowset.

Object Inconsistency

As a solution for repeating groups, you may decide to

remove the order-centric data from every record and put

in into the first record that contains orderItem-centric

data. See Figure B-2 for an illustration of this scenario.

The fact is that the table in Figure B-2 does not fit into

the relational database design concepts. It is impossible

to express a query that retrieves all order items for one

particular order with this data entry model.

Database Normalization 327

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Storage Space

The repeating values force the physical database file to

grow at a faster rate. The performance of a database

table hinges on the number of rows it contains. If the

Sales Department is entering around 50 orders per day

into this table, write performance decreases drastically

because for every order item entered, customer informa-

tion and order information has to be entered.

The Solution

The First Normal Form simply attempts to:

� Eliminate repeating groups in individual tables

� Create a separate table for each entity type

� Identify each row with a primary key

A good look at the table in Figure B-1 reveals that the

order details form a repeating group. Our solution to this

problem is to split this table into two separate tables, one

storing order details and the other storing the orders, as

illustrated in Figure B-3.

328 Appendix B

Figure B-2: Removal of repetitive groups

TEAM LinG - Live, Informative, Non-cost and Genuine!

The two are related by a many-to-one foreign key from

the OrderDetail table to the Order table, as shown in Fig-

ure B-4.

Each order detail has a composite primary key of its

order and product numbers. A single entity is easily

retrieved from these tables, as repeating groups, incon-

sistency, and storage space problems are eliminated.

These tables are in 1NF, and they are not at all perfect.

The Second Normal Form identifies and resolves further

issues with these tables.

Database Normalization 329

A
p
p
e
n
d
ix

Figure B-3: Splitting the table into two separate tables

Figure B-4: Relating the Order and OrderDetail tables

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Second Normal Form

The Second Normal Form is the second step to normaliz-

ing a database table. After undergoing this step of the

normalization process, the table is said to be in 2NF.

In this section, we continue to normalize the tables in

our 1NF example.

Functional Dependency

The functional dependency of a table column defines

whether the column is dependent on another column of

the same table or some other table.

The Second Normal Form attempts to remove columns

that are functionally dependent on any part of a compos-

ite key.

After taking a close look at the OrderDetail table, notice

that each of the products has one description and one

price. Price and description are therefore functionally

dependent on the product. To enter a new product, you

have to enter an order detail. This is inefficient in the

business world. The table has to be in 2NF, and since the

product is part of a composite key, this occurrence vio-

lates the core rule of the Second Normal Form.

The Solution

Notice that the products can be grouped into one entity

type altogether. This gives your users more flexibility in

entering new products as they come in while entering

order details when orders are made.

The solution that puts our set of tables into 2NF is split-

ting the OrderDetail table into two: OrderDetail and

Product, as illustrated in Figure B-5.

330 Appendix B

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Third Normal Form

The Third Normal Form is the third step in the normal-

ization process. It highly resembles the Second Normal

Form in its attempt to remove functional dependencies.

However, the Third Normal Form requires you to

remove dependencies between non-key columns.

The Order table is in 2NF, but it is still vulnerable to

attack from data duplication. Every time an order is

made, a new customer name and account number must

also be entered. Consider the situation where the Sales

Department is entering 12 orders for a particular cus-

tomer every week. Not surprisingly, the salespeople end

up entering the customer name and account number 48

times per month. After a few years, this unnecessary

duplication of data deals a severe blow to the perfor-

mance of the Order table because it will be big and slow,

and you will be guilty of violating the design concepts of

relational database design.

Customers and their accounts can be classified into a

new group—Account. In fact, when developing in the

real world, you would not want a customer to possess

more than one account. For our example, the division

illustrated in Figure B-6 will do.

Database Normalization 331

A
p
p
e
n
d
ix

Figure B-5: The OrderDetail and Product tables, which
are in 2NF

TEAM LinG - Live, Informative, Non-cost and Genuine!

The database tables are now in 3NF and very optimized

compared to the single Order table that we started with.

How Far to Normalize

There are other forms of normalization that exist beyond

the Third Normal Form. These are not used extensively

in the database engineering industry anymore, so they

are not covered in this appendix.

If you carefully follow the rules of the first three normal

forms, you will have a good relational database design.

Normalization Concerns

Normalization is a science of compromises. Although it

greatly increases the performance margin of relational

databases, extensive normalization that results in several

related tables can become a big performance problem and

a victim of its own normalization success. Normalization

is an issue that must be balanced.

Consider our example again. The query retrieving every

available detail for order number 2874 is:

SELECT *
FROM dbo.Order
WHERE Order = 2874

This is straightforward. After we’ve put the database into

3NF, the query to achieve this same result is:

SELECT dbo.Order.Order, dbo.OrderDetail.Quantity,
dbo.OrderDetail.Total, dbo.Product.ProductDescription,
dbo.Account.Customer

332 Appendix B

Figure B-6: The new Account group

TEAM LinG - Live, Informative, Non-cost and Genuine!

FROM dbo.Order INNER JOIN
dbo.OrderDetail ON
dbo.Order.Order = dbo.OrderDetail.Order INNER JOIN
dbo.Product ON
dbo.OrderDetail.Product = dbo.Product.Product
INNER JOIN

dbo.Account ON
dbo.Order.AccountNumber = dbo.Order.AccountNumber

WHERE (dbo.Order.Order = 2874)

The query requires us to construct complex joins in

order to achieve the same result. Joins are more efficient

when they are kept simple. However, there are many

things that can form part of an order in the real world.

Consider issues like shipment method and customer con-

tact information that are tied to an order. Retrieving all

this data using joins causes performance issues.

When normalizing, always maintain a plan as to how the

normalized table is going to be used and the depth of

related tables that you want to break it into.

Summary

In this appendix, we demystified the concepts of normal-

ization, the process of optimizing database tables to avoid

redundancy and waste of space that may affect read and

write procedures and result in bad performance.

The normalization process has three main forms:

� The First Normal Form eliminates repetition and

attempts to create a table for each entity type.

� The Second Normal Form removes the functional

dependency of any column on part of a composite pri-

mary key.

� The Third Normal Form removes the functional

dependency of any column on any other non-key

column.

Database Normalization 333

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Appendix C

Views, Stored
Procedures, and
Triggers

In This Appendix

This appendix provides a discussion of views, stored pro-

cedures, and triggers, and the steps involved in their

implementation inside SQL Server 2000. The main tools

used in this chapter are the Query Analyzer and the

Enterprise Manager.

Topics discussed are:

� The concepts of views, stored procedures, and

triggers

� The usage of views, stored procedures, and triggers

� The implementation of views, stored procedures, and

triggers using the Query Analyzer

335

TEAM LinG - Live, Informative, Non-cost and Genuine!

Views

There are times in application programming when the

developer inherits a database schema that will not

change radically throughout the lifetime of the database.

SQL views allows the developer to implement new

schema without having to change the underlying struc-

ture of the database. In effect, it allows the developer and

user to view the data from a different perspective.

Introduction to Views

A view, as its name suggests, is a way of presenting part

of the database to a user that fits his or her needs and

requirements. A view includes data derived from

selected columns and rows from one or more database

tables. You can think of a view as a “virtual table,” but no

data is actually stored in this virtual table. The content of

a view is defined by a query. The set of data that the view

represents is reconstituted by the DBMS (database man-

agement system) each time a query refers to the view.

Views in Action

Views provide developers with various solutions to some

common application development and data management

problems. In this section we will go over some common

uses of views.

Protecting the Data

As with normal tables, security restrictions can also be

applied to views (virtual tables). Views can be used to

restrict access to the database that different classes of

users have. Groups of users can be granted access to

only those views that reflect their processing needs.

Using views this way, access can be restricted both verti-

cally and horizontally—that is to say, restrictions on

336 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

columns and rows. That way, the confidentiality of cer-

tain data can be protected.

Note: Permissions on both tables and views are
granted for the whole object. Restrictions cannot be
applied per row, only per column. However, the
view definition itself can restrict which columns and
rows are returned as the result set.

Let’s consider a payroll system as a simple example. The

administrator can create views for all users so that they

can see only the employee details, such as Name, Sur-

name, Jobtitle, and DepartmentID, but without confiden-

tial details, such as Salary (restrictions on columns).

Another view could also be created for a particular user

that shows all the details but only for that user (restric-

tions on rows). Using views that way also insulates the

tables from unauthorized modification.

Simplifying Complex Queries

Views can also help SQL programmers to break down a

complex query into sets of smaller, simpler queries. Each

view would represent a step closer to what the program-

mer actually wants. The simpler views can be used in

subsequent views and SELECT statements to get a step

closer to the desired result.

Data Presentation

Views can also be used to represent information in a way

that is more meaningful to the user. Columns can be

combined and data can be formatted using various T-SQL

functions, such as cast and convert. For example, a view

can be used to combine Name and Surname columns into

a single Fullname column. A Datetime column can be

converted to a string or formatted to display long date

format to avoid ambiguity.

Views, Stored Procedures, and Triggers 337

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: Long date format displays the full name of
the month and also a four-digit year. For example,
1/2/01 becomes January 02, 2001, assuming the
standard we are using is U.S. If we were using the
British standard, the date would be February 01,
2001.

Views can also be used to denormalize the data before

presenting it to the user. Normalized tables, though effi-

cient for data storage, are not very intuitive to humans.

By using views, data can be presented in a more intuitive

way from multiple tables. Instead of showing foreign

keys, the value of the referenced table is shown to the

user. For example, in the Northwind database that we

used throughout this book, instead of showing ProductID

from the Order Details table, ProductName from the

Product table would be shown instead. You can also use

views to present summary data to the user by using

aggregate functions and GROUP BY, CUBE, and

ROLLUP.

Managing Views

There are several ways that views can be implemented

in SQL Server. With experience, you can learn to build

views using different techniques according to the situa-

tion you are in. The main tool for building views is the

New View tool in Enterprise Manager. The New View

window can be accessed by right-clicking on the View

node in the console tree and selecting New View from

the pop-up menu.

From within the tool, you have the option of designing

the view graphically from the diagram pane and further

refining it in the grid pane, or you can type the desired

query in the SQL pane. Changes in any of the three are

reflected in the other two. You will find that a combina-

tion of the three would best suit your needs.

338 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tip: You can also use the New View window to
generate template queries that you can use else-
where in your application. Use the Diagram pane to
design the skeleton of your query, and then copy
and modify the resulting SQL to suit your needs.

It is also possible to create a view from the Query Ana-

lyzer using SQL scripts. This technique is usually used

when deploying a new database. The database struc-

tures, including views, are generated into SQL script

files from the development database. The script is then

imported using SQL Analyzer on the new server. When

the script is run against an empty database, the database

structure is then recreated in the new database.

Views, Stored Procedures, and Triggers 339

A
p
p
e
n
d
ix

Figure C-1: The New View window

TEAM LinG - Live, Informative, Non-cost and Genuine!

The New View Window

The New View, or the Design View, window is the graphi-

cal tool provided in Enterprise Manager for the creation

and modification of views. You can modify an existing

view by right-clicking on it in Enterprise Manager. From

the pop-up menu, choose Design View to bring up the

Design View window. As shown in Figure C-2, the

Design View window contains a toolbar.

Note: The New View and Design View window
are the same, except one is used for creating new
views and the other is used for modifying an exist-
ing view.

340 Appendix C

Figure C-2: The Design View window showing the “Alpha-
betical list of products” view

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Toolbar

The toolbar has the following buttons (refer to Figure

C-2) from left to right:

� Save: Saves the view. If the view is new, a dialog will

pop up, allowing you to enter the name of the view.

� Properties: Opens a dialog box that allows you to

set additional properties and options for the view.

These include comments, encryption, schema bind-

ing, and with check option.

� Show/Hide diagram pane: Toggles the diagram

pane on and off

� Show/Hide Grid pane: Toggles the grid pane on

and off

� Show/Hide SQL pane: Toggles the SQL pane on

and off

� Show/Hide Results pane: Toggles the results pane

on and off

� Run: Runs the query in the SQL pane and displays

results in the results pane

� Cancel Execution and Clear results: Can cancel

the query that is running (if any) and clear the

results pane. It is only active when there is a query

running or the results pane is not empty.

� Verify SQL: Verifies that the query in the SQL pane

is a valid query

� Remove Filter: Removes filter on specified col-

umns. This is only active when a column with a filter

is selected in the diagram pane. In Figure C-2, the

Discontinued column in the Products table has a

filter.

Views, Stored Procedures, and Triggers 341

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Use ‘Group by’: Sets the Group by option so that

you can use GROUP BY in the query. An additional

column named Group by is added to the grid pane.

� Add Table: Adds a table to the diagram pane

Diagram Pane

The diagram pane shows a graphical layout of the view.

This includes tables and links between related tables.

Selected columns are also shown with a check mark next

to the column heading. Right-clicking the pane back-

ground brings up the pop-up menu from which you can

add new tables to the view. Right-clicking the tables and

links brings up context-sensitive menus where you can

set different options.

Grid Pane

The grid pane shows the selected columns in a grid for-

mat. From the grid pane, you can set additional options,

such as Alias (name of the column in the view), Sort

Type (Ascending or Descending), and Criteria (filter cri-

teria). The section is converted into the WHERE clause

of the SELECT statement).

SQL Pane

You can type the SQL query directly into the SQL pane.

Any new tables referenced or any joins made will be

reflected in the diagram and grid panes.

Results Pane

The results pane is used to display the result of running

the SQL query. You can run the query by using the Run

button on the toolbar.

342 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating Views Using SQL

Although it is easier to design views using the Design

View tool in Enterprise Manager, it is at times necessary

to use T-SQL to express complex views or special view

attributes.

Syntax

The syntax for creating, changing, and deleting a view is

shown below.

Creating a view:

CREATE VIEW [< database_name > .] [< owner > .]
< view_name >

[(< column > [,...n])]
[WITH < view_attribute > [,...n]]
AS
< select_statement >
[WITH CHECK OPTION]

Changing a view:

ALTER VIEW [< database_name > .] [< owner > .]
< view_name >

[(< column > [,...n])]
[WITH < view_attribute > [,...n]]
AS
< select_statement >
[WITH CHECK OPTION]

Deleting a view:

DROP VIEW < view_name > [,...n]

Note: Arguments between [] are optional.

Arguments

� < view_name >: The name of the view. View_name

must follow the same convention as identifiers. The

name can also include spaces, but in such a case, it

must be enclosed between [].

Views, Stored Procedures, and Triggers 343

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

� < column >: The name to be used for a column in

the view. Specifying column name in CREATE VIEW

is only required when a column is derived from a

computed field or when there are columns in the

SELECT part that have the same name (usually due

to table joins that have columns with the same

name). Column names can also be assigned in the

SELECT statement. Specifying the view owner is

optional.

� ,...n: n is a placeholder indicating that multiple

options can be specified.

� < view_attibute >: View attributes can include

ENCRYPTION, SCHEMABINDING, and VIEW_

METADATA.

� ENCRYPTION: SQL Server stores the text for

creating views in system table columns. This

attribute option instructs SQL Server to encrypt

the system table columns containing the text of

the CREATE VIEW statement. This prevents

the view from being published as part of the SQL

Server replication. It also prevents the database

user from being able to see the text for the

CREATE VIEW statement.

� SCHEMABINDING: This attribute binds the

view to the schema. When used, select_state-

ment must include the owner for any object ref-

erenced (owner.table_name, owner.view_name).

Tables and views referenced in select_statement

cannot be dropped (deleted) unless the bound

view is dropped first. However, the referenced

tables can be altered as long as the change does

not affect the view definition.

� VIEW_METADATA: Instructs SQL Server to

return metadata information about the view,

instead of metadata for base tables, to DBLIB,

ODBC, and OLEDB APIs. This happens when

344 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

clients using DBLIB, ODBC, or OLEDB APIs

request browse-mode metadata. Browse-mode

metadata are additional metadata returned by

SQL Server to client-side DBLIB, ODBC, or

OLEDB APIs, allowing client-side APIs to imple-

ment updateable client-side cursors. With the

VIEW_METADATA option, the browse-mode

metadata returns the view name, as opposed to

the base table names, when describing columns

from the view in the result set.

Note: When the VIEW_METADATA option is set,
all columns (except for timestamp) of the view are
updateable, as long as the view has INSERT or
UPDATE INSTEAD OF triggers. Updateable views
and triggers are discussed later in this chapter.

� <select_statement>: This is the SELECT state-

ment or SQL query that defines the result set of the

view. The SELECT statement can include references

to tables, as well as other views. This can be any

SQL SELECT statement, including multiple

SELECT statements separated by the UNION opera-

tor; however, there are certain restrictions. The

SELECT statement of a CREATE VIEW cannot

include the following:

� COMPUTE or COMPUTE BY clauses

� ORDER BY clause, unless there is also a TOP

clause in the select list

� The into keyword

� References to temporary tables or temporary

table variables

Warning: SQL Server allows a query expression
to reference a maximum of 1,024 columns.

� WITH CHECK OPTION: Ensures that all data mod-

ification executed against the view adhere to the

Views, Stored Procedures, and Triggers 345

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

criteria (usually set in the WHERE clause) set within

select_statement. This ensures that the data modi-

fied remains visible through the view after the modi-

fication is committed.

Warning: CREATE VIEW will fail if a view with the
same name exists in the database. Existing views
can be modified using ALTER VIEW instead of
CREATE VIEW. The syntax is the same for both. It is
also possible to drop an existing view and recreate it
using CREATE VIEW.

Below is a sample script for creating the “Alphabetical

list of products” view included with the Northwind data-

base. Notice that the script first checks to see if the view

already exists. If it exists, the view is then deleted using

DROP VIEW.

Listing C-1: The “Alphabetical list of products” view

/*Drop the view if it exists*/
IF EXISTS (SELECT * FROM sysobjects

WHERE id = object_id(N'[Alphabetical list of
products]')
AND OBJECTPROPERTY(id, N'IsView') = 1)

DROP VIEW [Alphabetical list of products]
GO
/*Create the view.*/
CREATE VIEW [Alphabetical list of products] AS
SELECT Products.*, Categories.CategoryName
FROM Categories INNER JOIN Products ON

Categories.CategoryID = Products.CategoryID
WHERE Products.Discontinued = 0

Note: Since the name of the view contains
spaces, it must be enclosed in [].

Views in Practice

Now that you know the syntax and tools for creating

views, let’s look at some examples of how to create

views of your own. These scripts were designed for use

with the Query Analyzer tool. You must connect to the

346 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

Northwind sample database before you execute the

scripts. You can also use the New View window if you

like. Just copy the query (the SELECT part only) into the

SQL pane. The other pane will be automatically adjusted.

Example 1: Order Header Query

In this example, we are going to create a view from the

Order table. As it is, the Order table is normalized.

Although this is an efficient way to store data, it is not

very intuitive for a user. So, we are going to present the

user with a denormalized version of the table. Since the

Order table represents the header of an order, we are

going to call our view “Order Header Query.” The script

for creating the view is shown below:

Listing C-2: Order Header Query view

/* Check if view already exists; if so, drop the view */
if exists

(select * from sysobjects
where id = object_id(N'[Order Header Query]')
and OBJECTPROPERTY(id, N'IsView') = 1)

drop view [Order Header Query]
GO

CREATE VIEW [Order Header Query]
/**
* Denormalized Order table to show values of linked *
* tables. *
**/
AS
SELECT Orders.OrderID as [Order ID],

Customers.CompanyName as [Customer Company Name],
Employees.Title + ': ' +
Employees.FirstName + ' ' +
Employees.LastName as Employee,

Orders.OrderDate as [Order Date],
Orders.RequiredDate [Required Date],
Orders.ShippedDate as [Shipped Date],
Shippers.CompanyName AS [Shippers Company Name],
Orders.Freight,
Orders.ShipName as [Ship Name],

Views, Stored Procedures, and Triggers 347

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Orders.ShipAddress as [Ship Address],
Orders.ShipCity as [Ship City],
Orders.ShipRegion as [Ship Region],
Orders.ShipPostalCode [Ship PostalCode],
Orders.ShipCountry as [Ship Country]

FROM Orders INNER JOIN
Customers ON Orders.CustomerID =
Customers.CustomerID INNER JOIN

Employees ON Orders.EmployeeID =
Employees.EmployeeID INNER JOIN

Shippers ON Orders.ShipVia = Shippers.ShipperID

First of all, the script checks and deletes a view with the

same name if one already exists. Notice that the com-

ment for the view is placed after the CREATE VIEW

statement. This will ensure that the comment is kept as

part of the view. Comments are important, especially for

maintenance purposes.

In the query, column names are aliased to more user-

friendly names, which include spaces. To use column

names with spaces, the names must be enclosed in [].

For example, OrderID is aliased as [Order ID].

SELECT Orders.OrderID as [Order ID],

CustomerID is replaced with a column named Cus-

tomers.CompanyName from the linked Customers table

and is aliased as [Customer Company Name]. ShipVia is

also replaced by Shippers.CompanyName aliased as

[Shippers Company Name]. The linked tables are shown

in Figure C-3.

348 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

EmployeeID is replaced by a computed column, which

combines three columns—Title, FirstName, and Last-

Name—from the Employees table. Notice that colons

followed by a space separate Title and FirstName. First-

Name and LastName are separated by a space only.

Employees.Title + ': ' +
Employees.FirstName + ' ' +
Employees.LastName as Employee,

As you can see, when denormalizing (usually required for

reporting purposes), you can combine multiple columns

for the linked table into one view column.

Tip: To make your code more readable, remem-
ber to indent and put each column on a separate
line. If a computed column is long, use multiple
lines, but indent the following line farther.

Example 2: ABC Sales by Customer

Let’s now look at a more complicated example. This

example will show you how to use views as a stepping-

stone for queries. Suppose you were given the task of

designing an ABC Sales by Customer query. An ABC

report is usually a performance analysis report that

shows the top ten and bottom ten of whatever column

Views, Stored Procedures, and Triggers 349

A
p
p
e
n
d
ix

Figure C-3: Diagram pane for Order Header Query view

TEAM LinG - Live, Informative, Non-cost and Genuine!

you are using for the performance analysis. In our case,

we would use the sum of subtotals of orders for each cus-

tomer. The query will show us our best and worst cus-

tomers (in terms of sales). Usually in such cases, you

would create two SELECT statements and then UNION

the two, but because such a query requires the use of

ORDER BY, UNION cannot be used. It must be done

using two separate SELECT statements, as shown in

Listing C-3:

Listing C-3: ABC Sales by Customer query

/*ABC Sales by Customer query*/
/*Top 10 Customers*/
SELECT TOP 10

Orders.CustomerID,
Customers.CompanyName,
SUM(
CONVERT (money,

(
[Order Details].UnitPrice *
[Order Details].Quantity

) *
(
1 - [Order Details].Discount

) / 100
)
* 100

) AS Subtotal
FROM [Order Details] INNER JOIN

Orders ON [Order Details].OrderID =
Orders.OrderID INNER JOIN

Customers ON Orders.CustomerID =
Customers.CustomerID INNER JOIN

Employees ON Orders.EmployeeID =
Employees.EmployeeID

GROUP BY Orders.CustomerID, Customers.
CompanyName, [Order Details].OrderID

ORDER BY Subtotal DESC

/*Bottom 10 Customers*/
SELECT TOP 10

Orders.CustomerID,
Customers.CompanyName,

350 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

SUM(
CONVERT (money,

(
[Order Details].UnitPrice *
[Order Details].Quantity

) *
(
1 - [Order Details].Discount

) / 100
)
* 100

) AS Subtotal
FROM [Order Details] INNER JOIN

Orders ON [Order Details].OrderID =
Orders.OrderID INNER JOIN

Customers ON Orders.CustomerID =
Customers.CustomerID INNER JOIN

Employees ON Orders.EmployeeID =
Employees.EmployeeID

GROUP BY Orders.CustomerID, Customers.
CompanyName,[Order Details].OrderID

ORDER BY Subtotal ASC

Notice that the only difference between the two

SELECT statements is the sorting order.

ORDER BY Subtotal ASC

and

ORDER BY Subtotal DESC

This is not ideal because we get two separate result sets.

Let’s see if we can find a solution to the problem using

views. The Northwind database already has a view called

Order Subtotals. We shall use it to do our ABC views.

You can double-click on the view to see the scripts that

were used to create it, or you can use the Design View

window.

Note: Double-click on the Order Subtotals view to
bring up the View Properties window. Right-click on
the view and choose Edit View from the pop-up to
bring up the Design View window.

Views, Stored Procedures, and Triggers 351

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Warning: Do not alter the views that came with
the Northwind database. This might cause some of
the scripts included in this book to fail.

All we need to do now is create two additional views: Top

10 Customers and Bottom 10 Customers. Both will use

the Order Subtotals window. Listing C-4 shows the

required scripts.

Listing C-4: Top 10 Customers and Bottom 10 Customers

view

/* Check if view already exists; if so, drop the view */
if exists

(select * from sysobjects
where id = object_id(N'[Top 10 Customers]')
and OBJECTPROPERTY(id, N'IsView') = 1)

drop view [Top 10 Customers]
GO

CREATE VIEW [Top 10 Customers]
/*********************************
* Show top best Customers in *
* term of sales *
*********************************/
AS
SELECT TOP 10

Orders.CustomerID,
Customers.CompanyName,
SUM([Order Subtotals].Subtotal) AS Subtotal

FROM Customers INNER JOIN
Orders ON Customers.CustomerID = Orders.CustomerID
INNER JOIN

[Order Subtotals] ON Orders.OrderID =
[Order Subtotals].OrderID

GROUP BY Orders.CustomerID, Customers.CompanyName
ORDER BY [Order Subtotals].Subtotal DESC
GO

/* Check if view already exists; if so, drop the view */
if exists

(select * from sysobjects
where id = object_id(N'[Bottom 10 Customers]')
and OBJECTPROPERTY(id, N'IsView') = 1)

drop view [Bottom 10 Customers]

352 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

GO

CREATE VIEW [Bottom 10 Customers]
/*********************************
* Show top worst Customers in *
* term of sales *
*********************************/
AS
SELECT TOP 10

Orders.CustomerID,
Customers.CompanyName,
SUM([Order Subtotals].Subtotal) AS Subtotal

FROM Customers INNER JOIN
Orders ON Customers.CustomerID = Orders.CustomerID
INNER JOIN

[Order Subtotals] ON Orders.OrderID = [Order
Subtotals].OrderID

GROUP BY Orders.CustomerID, Customers.CompanyName
ORDER BY [Order Subtotals].Subtotal ASC

Once these views have been created, we can then use

them to create the new ABC Sales by Customer query.

Listing C-5: The new ABC Sales by Customer query

/*ABC Sales by Customer*/
SELECT * from [TOP 10 Customers]
UNION
SELECT * from [Bottom 10 Customers]

As you can see, this query is much simpler than the one

in Listing C-3. The problem has been broken down into

simpler steps and is also the complete solution. In this

case, the full solution is not possible without the views.

Updateable Views

Views can be used as tables, and the underlying tables of

the view can be updated through the view provided that:

� The view contains at least one table in the FROM

clause of the view definition. You cannot update a

view that is based only on expressions.

Views, Stored Procedures, and Triggers 353

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

� No aggregate functions (AVG, COUNT, SUM, MIN,

MAX, GROUPING, STDEV, STDEVP, VAR, VARP)

or GROUP BY, UNION, DISTINCT, or TOP clauses

are used in the select list. The only instance when an

aggregate function allows an update is if the function

is used within a subquery defined in the FROM

clause and provided that the derived values from the

function are not modified.

� No derived columns are used in the select list.

Partitioned views using the UNION ALL operator can be

updateable. Any views that do not meet these criteria

can still be made updateable through the use of

INSTEAD OF triggers. Triggers are explained in a later

section.

Stored Procedures

Now that you know how to create views, let’s move on to

stored procedures. So the first question beckons: What is

a stored procedure?

Introduction to Stored Procedures

A stored procedure is a precompiled collection of Trans-

act-SQL statements stored with the database and pro-

cessed as a logical unit. SQL Server comes pre-loaded

with its own sets of stored procedures used for managing

the SQL Server and displaying information about data-

bases and users. These supplied stored procedures are

called system stored procedures. System stored procedures

are used for database administrative tasks and are stored

in the system database called Master. For example, you

can use the sp_help system stored procedure to get

information about objects in the current database.

354 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: The maximum size of a stored procedure is
128MB.

Advantages of Stored Procedures

There are many advantages in putting T-SQL code in

stored procedures rather than embedding it in a client

application.

Modular Programming

The stored procedure can be written once and stored

with the database. This is often done by database experts

and is a way of optimizing database operations. A stored

procedure can be modified independently of the client

application source code. Multiple client applications writ-

ten in a variety of programming languages (e.g., VB

.NET, C#, C++, ASP .NET, and Java) can use the same

stored procedures. This helps avoid duplication of effort.

It also allows customization of some aspects of the appli-

cation without the need for change in the client’s source

code.

Optimized Execution

Before any query can be executed by the server, the

T-SQL codes it contains are parsed and an execution plan

is created. The execution plan is an understanding of

what the query wants to do, and it effectively guides the

SQL Server to the most efficient way to execute the

query.

When a stored procedure is created, an execution plan

for the T-SQL code it contains is created, optimized, and

stored with the procedure. Subsequently, when the

stored procedure is executed, the same query plan is

used. The stored procedure is also cached in memory

after it is executed for the first time.

Views, Stored Procedures, and Triggers 355

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

On the other hand, when a client application sends a

query to the database, SQL Server parses the query to

create an execution plan. The query is not cached, and

the execution plan is recalculated each time the client

sends the query. This makes stored procedures much

more efficient, especially for long sets of T-SQL codes

and repetitive codes such as those found in a loop.

Reduced Network Traffic

An operation that requires hundred of lines of T-SQL

statements can be achieved by executing just one line of

code that calls a stored procedure. This reduces network

traffic considerably, both in terms of what is sent to the

server and also what is sent back to the client applica-

tion. It also has the added bonus of reducing the amount

of code in the client application, thus making it easier to

maintain and follow.

Enhanced Security

A user can be given access to execute a given stored pro-

cedure, even if he does not have permission to execute a

T-SQL statement found in the procedure. This way, you

can allow users to update the data only through stored

procedures where you can validate and implement busi-

ness rules.

Managing Stored Procedures

Stored procedures are created either within the Enter-

prise Manager using the Stored Procedure Properties

window or in SQL Query Analyzer.

Click on the Stored Procedures node of the Northwind

database in the console tree. All the stored procedures

for Northwind are loaded inside the right-hand pane of

the Enterprise Manager. Right-click the Stored Proce-

dures node and click New Stored Procedure in the pop-

up menu. The Stored Procedure Properties window

356 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

opens. The Text field is where the logic for the proce-

dure is coded. You can also edit existing stored proce-

dures by double-clicking on the stored procedure name

in the right pane. You cannot edit system stored proce-

dures, but you can still see their code.

Note: Once you have opened the Stored Proce-
dure Properties window, you must close it before
you can use any other part of Enterprise Manager.

You will find that working in SQL Query Analyzer is

much easier. The Query Analyzer contains some useful

tools that will help you with any T-SQL statements. For

instance, you can see the execution plan that will warn of

any bottleneck in the code.

Note: In SQL 2000, the Query Analyzer contains
an object browser.

You can use the object browser to help code your
stored procedures. You simply drag the object,
which also includes T-SQL functions, to your pro-
gramming window. The object browser can be
toggled on and off from the menu by selecting
Tools, Object Browser, Show/Hide. Alternatively, you
can use F8 as a keyboard shortcut.

Creating Stored Procedures

The code for stored procedures is written in T-SQL. To

effectively write complicated stored procedures, you

must possess a firm knowledge of T-SQL.

Syntax

Create a stored procedure:

CREATE PROC[EDURE] < procedure_name > [; number]
[{ @parameter data_type }
[VARYING] [= default] [OUTPUT]

] [,...n]
[WITH < procedure_attribute > [,...n]]
[FOR REPLICATION]

Views, Stored Procedures, and Triggers 357

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

AS
< sql_statement > [...n]

Modify a stored procedure:

ALTER PROC[EDURE] < procedure_name > [; number]
[{ @parameter data_type }
[VARYING] [= default] [OUTPUT]

] [,...n]
[WITH < procedure_attribute > [,...n]]
[FOR REPLICATION]
AS
< sql_statement > [...n]

Delete a stored procedure:

DROP PROCEDURE < procedure_name > [,...n]

Note: Arguments between [] are optional. Those
between { } must appear together.

Arguments

� < procedure_name >: The name of the stored pro-

cedure. The name can also include spaces, but if so,

it must be enclosed in []. Stored procedure names

must follow the same conventions as identifiers.

� ; number: This is an optional number used to group

procedures of the same name so that they can be

deleted at the same time with a single DROP PRO-

CEDURE statement. For example, you can create a

set of procedures for samples in this book as

sampleproc;1, sampleproc;2, and so on. After you

have finished with the samples, you can delete the

lot with one statement: DROP PROCEDURE

sampleproc.

� @parameter: This is the name of a parameter to the

procedure. Parameter names must start with a @

and must follow the same conventions as identifiers.

One or more parameters can be declared with a

stored procedure. When the procedure is called, the

358 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

value for each must be supplied, unless a default is

defined. Stored procedures in SQL Server 2000 can

have a maximum of 2,100 parameters.

Parameters are local to the procedure in which they
are defined.

� data_type: This is the parameter data type. You can

use any MS SQL 2000 data types, including text,

ntext, and image. The cursor data type can be used

only on OUTPUT parameters. When you specify cur-

sor parameters, the VARYING and OUTPUT

keywords must also be specified.

Note: Cursor data types in parameters contain a
reference to a cursor. In SQL, a cursor is a special
object that works on result sets. Its functionality is
similar to ADO .NET, and it allows row-by-row
manipulation of the result set. Cursors are created
using the CREATE CURSOR statement.

� VARYING: This applies only to cursor parame-

ters and specifies that the result set is supported

as an OUTPUT parameter. It denotes that the

output is constructed dynamically by the stored

procedure and its contents can vary.

� Default: This is the default value for the parame-

ter. The procedure can be executed without spec-

ifying a value (in which case the default value is

assigned to the parameter). The default must be

a constant or it can be null. It can also include

strings with wildcard characters (%, _, [], and

[^]) if the procedure uses the parameter with

the Like keyword.

� OUTPUT: This indicates that the parameter will

return a value. The value can be returned to

EXEC[UTE]. OUTPUT parameters are used to

return information to the calling procedure. Text,

ntext, and image parameters can be used as

Views, Stored Procedures, and Triggers 359

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

OUTPUT parameters. If the data type is a cursor,

the OUTPUT option must be used.

� ,...n: n is a placeholder indicating more than one

option can be specified.

� < procedure_attribute >: Procedure attributes are

RECOMPILE and ENCRYPTION.

� RECOMPILE: Directs SQL Server to not cache

a plan for this procedure, and the procedure is

recompiled at run time. Use the RECOMPILE

option when using temporary values without

overriding the execution plan cached in memory.

� ENCRYPTION: SQL Server stores the text for

creating views in system table columns. This

attribute option instructs SQL Server to encrypt

the system table columns containing the text of

the CREATE PROC[EDURE] statement. This

prevents the stored procedure from being pub-

lished as part of SQL Server replication. It also

prevents database users from being able to see

the code for the stored procedure.

� FOR REPLICATION: Creates a stored procedure

that is used as a stored procedure filter and is only

executed during replication. This option cannot be

used with the RECOMPILE option.

� <sql_statement>: This is the T-SQL code that

forms part of the procedure. This can also include

calls to other stored procedures. The compiler will

include all the SQL code in the script as part of the

stored procedure. You can, however, indicate where

the stored procedure ends by using the GO

statement.

Note: The syntax for ALTER PROC[EDURE] is the
same as for CREATE PROC[EDURE].

360 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

Executing Stored Procedures

Stored procedures are usually called from the client;

however, it is possible to issue a call to a stored proce-

dure from within another stored procedure or trigger.

The syntax for executing a stored procedure is:

EXECUTE sp_name [@parameter = value] [, …n]

sp_name is the name of the stored procedure you want to

execute. If the stored procedure takes any parameter,

you should also pass a valid value to it. It is possible to

pass the parameter values separated by commas. This is

practical only when you know the order in which the

parameters occur in the stored procedure. It is a better

programming practice to include the @parameter =

value syntax. This makes the code more readable.

The tool you will use most to create your stored proce-

dure is the Query Analyzer. The new version has some

templates included, which you can use as a building block

for your stored procedure.

Stored Procedures in Action

Now that you know how to create a stored procedure, it

is time we look at an example.

Note: By convention, most stored procedure
names are prefixed with sp and do not have spaces.
However, you can use your own convention includ-
ing spaces.

Example: Subtotal of an Order

In this example, our aim is to define a stored procedure

that returns the customer ID and subtotal of an order. We

will call the stored procedure sp_SubTotal.

Views, Stored Procedures, and Triggers 361

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: Stored procedures can only return an inte-
ger directly. Use this primarily to denote error codes.
To return other types, use the OUTPUT parameter.
Result set can also be returned if any SQL statement
does so.

Listing C-6: sp_SubTotal

-- ===
-- Create procedure sp_SubTotal
-- ===
-- Drop the procedure if it already exists

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = N'sp_SubTotal'
AND type = 'P')
DROP PROCEDURE sp_SubTotal

GO

-- creating the stored procedure version one
-- The values are returned as result sets
CREATE PROCEDURE sp_SubTotal;1

@OrderID integer
AS

SELECT Orders.CustomerID,
[Order Subtotals].Subtotal

FROM Orders INNER JOIN
[Order Subtotals] ON Orders.OrderID = [Order
Subtotals].OrderID

WHERE Orders.OrderID = @OrderID

GO

-- creating the stored procedure second version
-- The values are returned through OUPUT parameters
CREATE PROCEDURE sp_SubTotal;2

@OrderID integer,
@CustomerID nchar(5) OUTPUT,
@SubTotal money OUTPUT

AS

362 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

SELECT @CustomerID = Orders.CustomerID,
@SubTotal = [Order Subtotals].Subtotal

FROM Orders INNER JOIN
[Order Subtotals] ON Orders.OrderID = [Order
Subtotals].OrderID

WHERE Orders.OrderID = @OrderID

GO

-- ===
-- example to execute the stored procedure
-- ===
DECLARE @ID int
DECLARE @CustomerID nvarchar(5)
DECLARE @SubTotal money

SET @ID = 10249

-- Execute version 1, The default
EXECUTE sp_SubTotal @ID

-- Execute the second version
EXECUTE sp_SubTotal;2 @ID, @CustomerID OUTPUT, @SubTotal
OUTPUT

PRINT @CustomerID
PRINT CAST(@SubTotal as varchar)
GO

The script above produces two stored procedures that

perform the same calculation. The difference is that ver-

sion one returns a result set (same as if the query was

run directly), and the second version returns values

through OUTPUT parameters.

Triggers

There are times when, for data integrity purposes, you

need to maintain certain rules. These could be business

rules, such as conditions that need to be met before

allowing updates of certain fields. This is when triggers

come in handy.

Views, Stored Procedures, and Triggers 363

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Introduction to Triggers

A trigger is a special kind of stored procedure that exe-

cutes automatically when a change occurs in a database

record. There are three specific types of events that trig-

gers are mainly concerned with: INSERT, UPDATE, and

DELETE. Triggers allow you to run code automatically

that can perform any required check, change other

required data, or even reject the change if certain condi-

tions are not met.

Being specific to the type of operation being performed

on a record, UPDATE, INSERT, and DELETE are pow-

erful tools when it comes to the maintenance of referen-

tial integrity and enforcement of business rules. Triggers

can be defined on tables or views. In SQL Server 2000,

there is also a new kind of trigger called INSTEAD OF.

These triggers are executed instead of the triggering

action. For example, instead of doing an INSERT,

UPDATE, or DELETE operation on the table, the con-

trol is passed to the INSTEAD OF trigger, which is then

responsible for performing the appropriate action.

INSTEAD OF triggers can be defined on views referenc-

ing multiple tables (these views are normally not

updateable), so each of the referenced tables can be

updated appropriately.

Advantages of Triggers

A trigger is essentially a stored procedure, so it can con-

tain all the logic any stored procedure can handle. It is a

good programming practice to code logic inside stored

procedures. Then, inside the triggers, you use the stored

procedure as needed. Since triggers are a special kind of

stored procedure, they have the same advantages in

terms of performance and speed as stored procedures.

They also have some additional benefits, including

enforcing business rules and automatically running

routines.

364 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

Enforce Business Rules on the Database

Triggers are used to enforce business rules. The rules

are enforced on the database and independent of client

applications. This means that the rules are always

enforced, no matter what the client application does. You

can even have different client applications, such as a web

application client and a Windows Form application client.

If the rules change in the future, they can be modified

without having to change the client application.

Automatic Invocation of Other Routines

Triggers can also be used to automatically run certain

routines when there is a change to a table. These are

usually for auditing purposes, and the routine stores any

important changes in an audit trail table. For example, it

might be required that an audit trail is kept whenever an

employee salary is changed. Triggers can also be used to

automatically send e-mails to users whenever certain

changes occur.

Managing Triggers

As with stored procedures, the main tool for creating

triggers is the SQL Analyzer. However, you can also

view existing triggers from the Enterprise Manager. To

do this, simply right-click on a table and select All Tasks,

Manage Trigger from the pop-up menu. This will bring

up the Trigger Properties window.

Creating Triggers

Just like stored procedures, you also need to know

T-SQL before you can create a trigger. There are some

T-SQL statements that are only applicable to triggers.

Let’s have a look at the T-SQL syntax for managing

triggers.

Views, Stored Procedures, and Triggers 365

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Syntax

The full SQL syntax for creating, changing, and deleting

triggers is shown below.

Create a trigger:

CREATE TRIGGER < trigger_name >
ON { table | view }
[WITH ENCRYPTION]
{
{ { FOR | AFTER | INSTEAD OF } { [DELETE] [,] [INSERT]
[,] [UPDATE] }
[WITH APPEND]
[NOT FOR REPLICATION]

AS
< trigger_logic > [...n]

Modify a trigger:

ALTER TRIGGER < trigger_name >
ON { table | view }
[WITH ENCRYPTION]
{
{ { FOR | AFTER | INSTEAD OF } { [DELETE] [,] [INSERT]
[,] [UPDATE] }
[WITH APPEND]
[NOT FOR REPLICATION]

AS
< trigger_logic > [...n]

Delete a trigger:

DROP TRIGGER < trigger_name >

Arguments

� < trigger_name >: The name of the trigger. The

name can also include spaces, but if so, it must be

enclosed in []. Trigger names must follow the same

conventions as identifiers.

366 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

� WITH ENCRYPTION: SQL Server stores the text

for creating the trigger in system tables. This attrib-

ute option instructs the SQL Server to encrypt the

system table columns containing the text for the trig-

ger. This prevents the trigger from being published

as part of the SQL Server replication. It also pre-

vents the database user from being able to see the

code for the trigger.

� AFTER: This is new in SQL Server 2000. It is used

to specify that the trigger is fired only when all oper-

ations specified in the triggering SQL statement have

executed successfully. This trigger will only execute

after all referential cascade actions and constraint

checks succeed.

Note: Using the FOR keyword has the same effect
as using the AFTER keyword. AFTER triggers cannot
be defined on views.

� INSTEAD OF: This specifies that the trigger is exe-

cuted instead of the triggering SQL statement and,

therefore, overrides the actions of the triggering

statements. At most, there can only be one

INSTEAD OF trigger per INSERT, UPDATE, or

DELETE statement defined on a table or view. How-

ever, it is possible to define views on views where

each view has its own INSTEAD OF trigger.

Warning: INSTEAD OF triggers are not allowed
on updateable views with the check option set.

� { [DELETE] [,] [INSERT] [,] [UPDATE] }: These

are the keywords that specify which data modifica-

tion statements, when attempted against this table or

view, will activate the trigger. At least one option

must be specified. You can have any combination of

these in the trigger definition.

Views, Stored Procedures, and Triggers 367

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: For INSTEAD OF triggers, the DELETE
option is not allowed on tables that have a referen-
tial relationship specifying a cascade action ON
DELETE. Also, the UPDATE option is not allowed on
tables that have a referential relationship specifying
a cascade action ON UPDATE.

� WITH APPEND: This is used to add additional trig-

gers of an existing type. WITH APPEND is used for

older versions of SQL Server and the clause is not

needed to add an additional trigger in SQL 2000. In

future versions it will not be supported; thus, you

should not use it.

� NOT FOR REPLICATION: Prevents the trigger

from being executed when a replication process mod-

ifies the table

� < trigger_logic >: This includes the SQL state-

ments and logic for the trigger. There are logical

tables and special logical statements that you can use

in triggers. These are deleted and inserted logical

tables, and the logical clause IF UPDATE (column).

� deleted and inserted: These are logical (concep-

tual) tables. They are structurally similar to the

table on which the trigger is defined and hold the

old values or new values of the rows that may be

changed by the action. For example, to retrieve

all values in the deleted table, use SELECT *

FROM deleted.

� IF UPDATE (column): Tests for an INSERT or

UPDATE action to a specified column and is not

used with DELETE operations. More than one

column can be specified. Because the table name

is specified in the ON clause, there is no need to

include the table name before the column name

in an IF UPDATE clause. IF UPDATE will return

the TRUE value in INSERT actions because the

368 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

columns have either explicit values or implicit

(null or default) values inserted.

Recursive Triggers

SQL Server also allows recursive invocation of triggers

when the recursive triggers setting is enabled in the

database.

Recursive triggers allow two types of recursion to occur:

� Indirect recursion

� Direct recursion

With indirect recursion, an application updates table one,

which fires trigger one, updating table two. Trigger two

then fires and updates table one, and so on.

With direct recursion, the application updates a table,

which fires a trigger, updating the table itself. Because

the table was updated again, the trigger fires again, and

so on.

Note: The above behavior occurs only if the
recursive triggers setting of sp_dboption is enabled.
There is no defined order in which multiple triggers
specified for a given event are executed. Each trig-
ger should be self-contained.

Disabling the recursive triggers setting only prevents

direct recursions. To disable indirect recursion as well,

set the nested triggers server option to 0 using

sp_configure.

If any of the triggers do a ROLLBACK TRANSACTION,

regardless of the nesting level, no further triggers are

executed.

Views, Stored Procedures, and Triggers 369

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Nested Triggers

Triggers can be nested to a maximum of 32 levels. If a

trigger changes a table on which there is another trigger,

the second trigger is activated and can then call a third

trigger, and so on.

Warning: If any trigger in the chain sets off an
infinite loop, exceeding the nesting level, the trigger
is canceled. To disable nested triggers, set the
nested triggers option of sp_configure to 0 (off). The
default configuration allows nested triggers. If
nested triggers is off, recursive triggers is also dis-
abled, regardless of the recursive triggers setting of
sp_dboption.

Triggers in Action

Now that you know how to create triggers, let’s see an

example.

Example: Prevent Ordering of Discontinued
Products

When ordering new products, you want to make sure that

no orders are placed for discontinued products. To do

this, you must create an UPDATE/INSERT trigger on

the Order Details table.

Listing C-7: Check Product Order Details trigger

-- ===
-- Drop trigger if it already exists
-- ===

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = N'Check Product Order Details'
AND type = 'TR')

DROP TRIGGER [Check Product Order Details]
GO

-- ===

370 Appendix C

TEAM LinG - Live, Informative, Non-cost and Genuine!

-- Create trigger [Check Product Order Details]
-- ===

CREATE TRIGGER [Check Product Order Details]
ON [Order Details]
FOR INSERT, UPDATE
AS
BEGIN

-- ===
-- Do the Discontinued check only if ProductID
-- has been modified
-- ===
IF UPDATE(PRODUCTID)
BEGIN

DECLARE @DISCOUNTINUED BIT
DECLARE @PRODUCTID integer

-- ===
-- Set discontinued on as default, so that if it
-- does not exist, there will also be an error.
-- This is for illustration only. This test is
-- already done in the foreign key constraint
-- ===

SET @DISCOUNTINUED = 1

-- ===
-- Get the Discontinued and ProductID
-- Note the use of logical table "inserted" to
-- work out the ProductID
-- ===

SELECT @DISCOUNTINUED = Discontinued,
@PRODUCTID = P.ProductID

FROM Products P INNER JOIN Inserted I
ON P.ProductID = I.ProductID

-- ===
-- IF product is discontinued, then RAISE an
-- error and rollback transaction to prevent saving
-- ===

IF @DISCOUNTINUED = 1
BEGIN
RAISERROR

Views, Stored Procedures, and Triggers 371

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

(' The Product(ID: %d) is discontinued or does not
exist.', 16, 1, @PRODUCTID)

ROLLBACK TRANSACTION
END

END
END
GO

The above script example demonstrates the use of a sim-

ple trigger. You can test the trigger by changing the value

of the ProductID in an existing row in the Order Details

table to that of a discontinued product. Figure C-4 shows

the resulting error message that is generated if the prod-

uct is discontinued.

Summary

In this chapter you learned about the following database

objects:

� Views

� Stored procedures

� Triggers

Although you are able to create all of these objects using

SQL code, SQL Server provides a number of visual tools

to help you achieve any task you may decide to under-

take with these objects. The SQL Query Analyzer is a

powerful T-SQL development tool that you can use to

write and test your SQL scripts.

372 Appendix C

Figure C-4: Error generated by trigger

TEAM LinG - Live, Informative, Non-cost and Genuine!

Views, stored procedures, and triggers can be used

together to generate a powerful database solution that

hinges on efficient business rule enforcement.

Views, Stored Procedures, and Triggers 373

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Appendix D

Advanced SQL
Query Techniques

In This Appendix

This appendix will show you various tricks and tech-

niques that you can use with SQL queries.

These include:

� Advanced insertion and deletion

� Recursive stored procedures

� Dynamic queries

� Stored procedure generator

� GROUP BY with CUBE and ROLLUP

� Server cross tabulations with SQL

Note: In this appendix, all examples will use the
Northwind database, as is the case throughout the
book. Some of the examples in this appendix will
cause deletion of data. It is, therefore, recom-
mended that you back up the Northwind database
so that you can restore it after you are done with
this appendix.

375

TEAM LinG - Live, Informative, Non-cost and Genuine!

Advanced Insertion and Deletion

Traditionally with SQL, INSERT and DELETE state-

ments work with only one row at time. For example, if

you have ten rows to insert in a table, you have to do ten

INSERT statements, usually in a loop. This can be very

inefficient.

Insertion with SELECT

Standard insertion is very simple. For example, let’s con-

sider the case where you want to add a product to an

order. To simplify error checking, we will create a stored

procedure called sp_OrderAddProduct.

Listing D-1

/**
Drop stored procedure if already exist
**/
if exists (select * from dbo.sysobjects where id =

object_id(N'sp_OrderAddProduct') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure sp_OrderAddProduct
GO

create procedure sp_OrderAddProduct
/**
Procedure: sp_OrderAddProduct
Date: 14 July 2002
Author: Ryan N. Payet
Description: Insert New products in [Order Details] table

Version History

0.1, 14 July 2002, Ryan N. Payet:

Procedure Created

**/
@OrderID integer,
@ProductID integer,
@Quantity smallint = 1,

376 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

@Discount real = 0
as
BEGIN

DECLARE @@UnitPrice as Money
DECLARE @@ERRORMSG as varchar(256)

/*Check Order exist */
IF NOT EXISTS (SELECT OrderID FROM Orders WHERE OrderID

= @OrderID)
BEGIN
/*Order does not exist, raise error*/
SET @@ERRORMSG = 'Given Order does not exist in table

Orders'
RAISERROR (@@ERRORMSG, 16, 1)
RETURN 1
END

/*Check Valid Product exist */
IF NOT EXISTS
(

SELECT ProductID FROM Products
WHERE ProductID = @ProductID AND
Discontinued = 0

)
BEGIN
/*Order does not exist, return with 1*/

SET @@ERRORMSG = 'Given Product does not exist in table
Products or it has been discontinued'

RAISERROR (@@ERRORMSG , 16, 1)
RETURN 1
END

SELECT @@UnitPrice = UnitPrice
FROM Products
WHERE ProductID = @ProductID
/* Do the insertion */
BEGIN TRANSACTION

INSERT INTO [Order Details]
(OrderID, ProductID, UnitPrice, Quantity, Discount)

Advanced SQL Query Techniques 377

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

VALUES
(@OrderID, @ProductID, @@UnitPrice, @Quantity,
@Discount)

IF @@ERROR <> 0
ROLLBACK TRANSACTION

ELSE
COMMIT TRANSACTION

RETURN 0

END

GO

Tip: Notice that there is a header comment within
the CREATE statement that describes the functional-
ity and version history of stored procedures. This
allows the comments to be stored together with the
procedure in the database so that future developers
will be able to see the comment, even though they
might not have the source script.

The stored procedure is simple and contains some error

checking routines. This error checking helps to maintain

data integrity, such as preventing addition of discontin-

ued products, and avoid getting constraint violation

errors with foreign keys. To do error checking and get

the current unit price of a product requires three

SELECT statements. Now consider the following listing,

which makes use of INSERT with SELECT.

Listing D-2

/**
Drop stored procedure if already exist
**/
if exists (select * from dbo.sysobjects where id =

object_id(N'sp_OrderAddProduct') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure sp_OrderAddProduct
GO

378 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

create procedure sp_OrderAddProduct
/**
Procedure: sp_OrderAddProduct
Date: 14 July 2002
Author: Ryan N. Payet
Description: Insert New products in [Order Details] table

Version History

0.1, 14 July 2002, Ryan N. Payet:

Procedure Created
0.2, 14 July 2002, Ryan N. Payet:

Optimized to use INSERT with SELECT
**/
@OrderID integer,
@ProductID integer,
@Quantity smallint = 1,
@Discount real = 0
as
BEGIN

DECLARE @@ERRORMSG as varchar(256)

/* Do the insertion */
BEGIN TRANSACTION

INSERT INTO [Order Details]
(OrderID, ProductID, UnitPrice, Quantity, Discount)
SELECT Orders.OrderID, Products.ProductID,
Products.UnitPrice,1,0

FROM Orders, Products
WHERE Orders.OrderID = @OrderID AND

Products.ProductID = @ProductID AND
Products.Discontinued = 0

/*
Check to see if 1 row was affected
If no row or more than 1 row was inserted
then there was error

*/
IF @@ROWCOUNT <> 1
BEGIN

Advanced SQL Query Techniques 379

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

SET @@ERRORMSG = 'Given Order or Product does not
exist or the Product has been
discontinued'

RAISERROR (@@ERRORMSG, 16, 1)
ROLLBACK TRANSACTION
RETURN 1

END
ELSE
BEGIN
COMMIT TRANSACTION
RETURN 0

END

END

GO

Version 0.2 of the stored procedure is smaller, and the

INSERT statement now uses a SELECT to generate the

data it requires for the insert. This is much more effi-

cient than the previous version, which required three

SELECT statements and one INSERT. The main rule to

remember is that the columns returned by the SELECT

statement must be compatible with the column list in the

INSERT INTO section. Another variation of this to use a

stored procedure that returns Recordset.

INSERT INTO <Table_Name>
(<Column_List>)
EXECUTE <Stored_Procedure>

The INSERT with SELECT really excels when there is

more than one row of data that you want to insert. Sup-

pose you want to copy the order details of one order to

another. With the standard INSERT, you will have to loop

through the source and do an insert for each row. Using

INSERT with SELECT, only one INSERT statement is

required.

Listing D-3

DECLARE @@SrcOrderID as integer
DECLARE @@DestOrderID as integer

380 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

SET @@SrcOrderID = 10248
SET @@DestOrderID = 10296

INSERT INTO [Order Details]
(OrderID, ProductID, UnitPrice, Quantity, Discount)

SELECT @@DestOrderID,
[Order Details].ProductID,
[Order Details].UnitPrice,
[Order Details].Quantity,
[Order Details].Discount

FROM [Order Details]
WHERE [Order Details].OrderID = @@SrcOrderID AND

[Order Details].ProductID NOT IN
(SELECT ProductID FROM [Order Details]
WHERE [Order Details].OrderID = @@DestOrderID

)

In the example in Listing D-3, the order details of order

10248 are copied to order 10296. If you look carefully at

the SELECT statement, you will notice that it includes a

sub-SELECT in the WHERE clause to prevent copying

of products that are already available in order 10296.

DELETE with Multiple Table WHERE Clause

We have so far seen how we can insert multiple-row data

using SELECT. With DELETE, you have a WHERE

clause, so it is possible to delete more than one row of

data. You are probably wondering when you would need

to refer to multiple tables. Consider the following prob-

lem. Suppose you want to delete discontinued products

from the Order Details table that has been maintained by

a particular employee. The relationship between the

Orders, Order Details, and Products tables are shown in

Figure D-1.

Advanced SQL Query Techniques 381

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

To solve the problem, let’s approach it from a SELECT

angle, which is “Show discontinued Products from Order

Details that has been maintained by a particular

employee.” Using the relationship, we can do a simple

SELECT, as shown here:

Listing D-4

SELECT [Order Details].OrderID,
[Order Details].ProductID

FROM [Order Details]
INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

INNER JOIN Orders
ON Orders.OrderID = [Order Details].OrderID

WHERE (Products.Discontinued = 1) AND
(Orders.EmployeeID = 1)

Note: For the example, we will use the employee
with EmployeeID 1. This can be replaced later by
the required EmployeeID. Discontinued products
have the Products.Discontinued value of 1.

382 Appendix D

Figure D-1: Orders, Order Details, and Products tables

TEAM LinG - Live, Informative, Non-cost and Genuine!

The result of the SELECT is the rows that we want to

delete. By doing the SELECT first, we are able to see

exactly which row will be deleted. Now it is a simple

matter of modifying the script to make it do the deletion.

Listing D-5

DELETE [Order Details]
FROM [Order Details]

INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

INNER JOIN Orders
ON Orders.OrderID = [Order Details].OrderID

WHERE (Products.Discontinued = 1) AND
(Orders.EmployeeID = 1)

Warning: Running the script will cause certain
data to be deleted. It is recommended that you back
up the Northwind database before you run the
script. You can then restore it later when you have
finished with this appendix.

One additional point about DELETE is that if the table is

used in a sub-query, you must use an alias. For example,

if you want to delete the five lowest performing Order

Details, you would have to use the following script:

Listing D-6

DELETE [Order Details]
FROM
(SELECT TOP 5 OrderID,
SUM(UnitPrice * Quantity * (1 - Discount)) as
Ordervalue
FROM [Order Details] GROUP BY OrderID
ORDER BY Ordervalue

) as T1
WHERE [Order Details].OrderID = T1.OrderID

As you can see, you can even use TOP, GROUP BY, and

ORDER BY in the sub-SELECT.

Advanced SQL Query Techniques 383

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Recursive Stored Procedures

One of the common features of most modern program-

ming languages is the ability to do recursion. Recursion is

the ability of functions or procedures to call themselves.

Though not always mentioned, this ability is also avail-

able in SQL Query.

One of the classic programming problems is sorting.

Sorting of rows is simple with SQL, but suppose you

have a string field that contains comma separated values

(CSV) that you need to sort; then SELECT with ORDER

BY is not much use.

The requirement to sort the value in a file might arise if

you are maintaining metadata. This is especially common

for web back-end databases. Suppose you need to main-

tain a list of column numbers that have been changed by

the front end. The first step is to find a way to number

your columns. The best way is to use the same order as

defined in the database.

Listing D-7

DECLARE @TableName varchar(50)

SET @TableName = 'Employees'

SELECT name FROM syscolumns
WHERE id = OBJECT_ID(@TableName)
ORDER BY colorder

The script in Listing D-7 returns the column names for

the Employees table. The result is shown in Figure D-2.

384 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

Going back to our original CSV problem, suppose that a

user changes the value in City. Our CSV will contain one

value, “9.” If the user then changes Notes, HomePhone,

Title, and Address, the final CSV will be “9, 16, 13, 4, 8.”

Suppose now that CSV needs to be sorted so that it

becomes “4, 8, 9, 13, 16,” and for the purpose of this

exercise, let’s assume that you need this done in a stored

procedure. You will have to implement some sort of stor-

ing routine. One of the most common sorting algorithms

is called Quick Sort.

Advanced SQL Query Techniques 385

A
p
p
e
n
d
ix

Figure D-2: The columns of the Employees table

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Quick Sort Algorithm

The pseudocode for Quick Sort is fairly simple.

Start Sort
Get First Value in List
If there is other value then put all other values less
than current value in <Left List> and all values more than
current value in <Right List>; otherwise end the sort
Sort <Left List> /* this is a recursive call*/
Sort <Right List> /* this is a recursive call*/
Sorted list = Left List, Value, Right List
END Sort

The challenge now is in implementing the algorithm in

SQL. We will call the stored procedure to do a Quick Sort

of a CSV list sp_QuickSort.

The sp_QuickSort Stored Procedure

The first step is to make sure that if the stored procedure

exists, we delete it so that we can create a new one. We

also create the stored procedure but with no logic inside.

This is not required, but it prevents getting warning

messages when we apply the script with recursive calls.

Listing D-8a

IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'sp_QuickSort' AND type = 'P')

DROP PROCEDURE sp_QuickSort
GO

create procedure sp_QuickSort
@@CSVList varchar(256) = '' OUTPUT
AS
/*Create PROCEDURE first to allow recursion call to
compile without warning*/

GO

Now that we have the blank stored procedure, the next

step is to alter it and add the logic. We begin by declaring

the variable we will need.

386 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

Listing D-8b

ALTER procedure sp_QuickSort
/**
Procedure: sp_sp_QuickSort
Date: 15-July-2002
Author: Ryan N. Payet
Description: Quicksort a CSV list, also remove duplicate

entry

Version History

0.1, 15-July-2002, Ryan N. Payet

Procedure Created

**/
@@CSVList varchar(1000) = '' OUTPUT
AS
BEGIN

IF @@CSVList = ''
GOTO END_SORT

/*Declare string variables to store list*/
DECLARE @Left_List varchar(1000)
DECLARE @Right_List varchar(1000)

/*Declare string variables to
store a single item in list*/

DECLARE @strItem varchar(20)
DECLARE @StrOneCSV varchar(20)

/*Since items in list are numbers
we need to covert string to numbers
before we can do comparison
First we declare integer variable to hold
number for comparison*/
DECLARE @intItem int

/*Declare variables used to process list*/
DECLARE @start int
DECLARE @end int
DECLARE @length int
/*Set both lists to empty string*/

Advanced SQL Query Techniques 387

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

SET @Left_List = ''
SET @Right_List = ''

Now that we have declared our variable, we move on to

getting the first item in the list. If we do not find a “,”

(comma) character in the list, we can safely assume that

there is no value in the list (empty list) or there is only

one value in the list. In either case, there is no need to

sort the list. If we find that the list has more than one

item, then we get the first item in the list.

Listing D-8c

/*Start processing CSV so as to get first item*/
SET @start = 1

/*Find position of first "," */
SET @end = CHARINDEX(',', @@CSVList, @start)

/*if there is no “,” then no need to sort.*/
IF @end = 0
GOTO END_SORT

/*Get string length of first number*/
SET @length = @end - @start
IF @length = 0
BEGIN
SET @length = 1
SET @end = 0

END

/*Get first Value*/
SET @strItem = substring(@@CSVList , @start, @length)
SET @intItem = cast(@strItem as integer)
SET @start = @end + 1
SET @end = CHARINDEX(',', @@CSVList , @start)

/*Get other values in list*/

Now that we know the value of the first item, we can find

the other items and build our right list of items greater

than current value and left list for items less than current

value.

388 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: Using only “greater than” (>) and “less
than” (<) also removes duplicates in the list. To keep
duplicates you must either use “greater than or
equal to” (>=) on right list or use “less than or
equal to” (<=) on left list.

Listing D-8d

WHILE (@end <> 0)
BEGIN
SET @length = @end - @start

SET @StrOneCSV = substring(@@CSVList , @start,
@length)

SET @start = @end + 1
SET @end = CHARINDEX(',', @@CSVList , @start)

/*If greater than first value,
then add to Right_List
If less than first value,
add to Left_List*/

IF CAST(@StrOneCSV as integer) > @intItem
SET @Right_List = @StrOneCSV + ',' + @Right_List

ELSE IF CAST(@StrOneCSV as integer) < @intItem
SET @Left_List = @StrOneCSV + ',' + @Left_List

END

/*Process last item in list*/
SET @length = len(@@CSVList)
SET @StrOneCSV = substring(@@CSVList , @start,

@length)
IF CAST(@StrOneCSV as integer) > @intItem
SET @Right_List = @StrOneCSV + ',' + @Right_List

ELSE IF CAST(@StrOneCSV as integer) < @intItem
SET @Left_List = @StrOneCSV + ',' + @Left_List

/*Clean lists of trailing "," chracter*/
SET @length = len(@Left_List) - 1
if @length > 0
SET @Left_List = substring(@Left_List , 1, @length)

Advanced SQL Query Techniques 389

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

SET @length = len(@Right_List) - 1
if @length > 0
SET @Right_List = substring(@Right_List , 1, @length)

All that remains is for us to sort the right list and left list

using recursive calls to sp_QuickSort. Once we are done,

we can rebuild the list.

Listing D-8e

/*quicksort front of list: <Left_List>*/
EXECUTE sp_QuickSort @Left_List OUTPUT

/*quicksort back of list: <Right_List>*/
EXECUTE sp_QuickSort @Right_List OUTPUT

/*Rebuild sorted list*/
if len(@Left_List) > 0
SET @@CSVList = @Left_List + ',' + @strItem

ELSE
SET @@CSVList = @strItem

if len(@Right_List) > 0
SET @@CSVList = @@CSVList + ',' + @Right_List

END_SORT:
END

GO

Recursion is not really that difficult, once you master the

basic algorithms. To simplify your SQL scripts, you

should avoid having to do recursion logic. However, in

certain circumstances where you do not have a choice,

recursion can be very useful.

Let’s now move to something more fun that can save a

lot of time when used properly.

390 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

Dynamic Queries

Dynamic queries are queries that are non-deterministic.

In other words, the actual query run, or the number of

columns returned, are not known at design time but are

determined by parameters at run time.

This is made possible by the ability of the EXECUTE

statement and a system stored procedure called

sp_executesql to execute scripts from strings.

For example, you can get the same result from

SELECT * FROM [Order Details]

by running the following

EXECUTE ('SELECT * FROM [Order Details]')

The difference is that with the EXECUTE statement, the

script is in a string that we can programmatically manipu-

late. Consider the following:

DECLARE @SQLSCRIPT as nvarchar(1000)
DECLARE @TableName as nvarchar(100)

SET @SQLSCRIPT = 'SELECT * FROM '
SET @TableName = '[Order Details]'

EXECUTE (@SQLSCRIPT + @TableName)

Note: Spaces in the string that you use are
important.

By simply changing the value of @TableName to Orders,

we can do a select on the Orders table.

DECLARE @SQLSCRIPT as nvarchar(1000)
DECLARE @TableName as nvarchar(100)

SET @SQLSCRIPT = 'SELECT * FROM '
SET @TableName = 'Orders'
EXECUTE (@SQLSCRIPT + @TableName)

Advanced SQL Query Techniques 391

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

This is all very fine and great, but the EXECUTE state-

ment does have certain limitations. One of the major lim-

itations is that the script in use cannot return any value.

To overcome this, you have to use sp_executesql.

sp_executesql

sp_executesql has a simple syntax:

sp_executesql <Script>, [<Parameter list> , Parameter1,
n...]

� <Script>: A string that contains the script you want

to execute

� <Parameter list>: A string that contains the decla-

ration of parameters used in <Script>

� Parameter1, n…: The parameters you want to pass

in <Script> and/or the return value from <Script>

Consider the following situation. Let’s assume that you

need a stored procedure to return the rows for a given

table name, a column name, and a search value. Let’s call

this stored procedure sp_getRows. The script for

sp_getRows is shown in Listings D-9a to D-9c.

The first step, as usual, is to declare the stored proce-

dure and variable required.

Listing D-9a

if exists
(select * from dbo.sysobjects
where id = object_id(N'sp_GetRows') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure sp_GetRows
GO

create procedure sp_GetRows
/**
Procedure: sp_UpdateContactInfo
Date: 16-July-2002

392 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

Author: Ryan N Payet
Description: Return rows for the given table and

search criteria

Version History

0.1, 16-July-2002, Ryan N Payet:

Procedure Created
**/
@TableName nvarchar(100),
@ColumnName nvarchar(100) = '1',
@Value sql_variant = '1',
@Operator nvarchar (15) = '='

AS
BEGIN
/*Declare variable to hold script*/
DECLARE @@SQLScript as nvarchar(4000)
DECLARE @@SQLPARAMETER as nvarchar(1000)

/*Declare variable to manage errors*/
DECLARE @@ERRORMSG as varchar(256)
DECLARE @Error_Code as integer

Note: SLQ_variant is a data type that can store
values of any SQL Server data types with the excep-
tion of text, ntext, timestamp, image, and SQL_
variant.

We must make sure that the table name and column

name given are valid.

Listing D-9b

/*Check if table exist*/
if NOT exists

(SELECT * FROM dbo.sysobjects
WHERE id = object_id(@TableName)
and OBJECTPROPERTY(id, N'IsUserTable') = 1)

BEGIN
SET @@ERRORMSG = 'Table "' + @TableName

+ '" does not exist in database'
RAISERROR (@@ERRORMSG , 16, 1)
RETURN 1

END

Advanced SQL Query Techniques 393

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

/*If you base a number as column name then
do not check for existence of column.
This allows it to return all rows
by passing a column 1 and a value 1
*/

IF ISNUMERIC(@ColumnName) = 0
BEGIN
IF NOT exists
(SELECT * FROM syscolumns
WHERE (id = OBJECT_ID(@TableName))
AND UPPER([name]) = UPPER(@ColumnName))

BEGIN
SET @@ERRORMSG =''

+ 'Column "' + @ColumnName
+ '" does not exist in table "'
+ @TableName + '"'

RAISERROR (@@ERRORMSG , 16, 1)
RETURN 1
END /*IF NOT exists */

END /*IF ISNUMERIC(@ColumnName) = 0*/

We can then build our script. The point to note here is

that @Value is not a variable but a string literal in the

@@SQLScript variable. We also get the value of

@@ERRORR right after the SELECT in the script. We

build a parameter list to be used with sp_executesql in

@@SQLPARAMETER and when it is passed in

sp_executesql. @error_code is defined as an OUTPUT

type. This is necessary so that we can get a value from

the script passed in sp_excutesql. Also, the parameters

must be used in the same order that they are defined in

@@ SQLPARAMETER.

Listing D-9c

/*Build Script*/
SET @@SQLScript = ''
+ 'SELECT * FROM ' + @TableName + Char(13)
+ 'WHERE ' + @ColumnName
+ ' ' + @Operator +
+ ' @Value' + Char(13)
+ 'SET @Error_Code = @@ERROR'

394 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

/*Build parameter for script*/
SET @@SQLPARAMETER = '@Value sql_variant,'
+ ' @error_code integer OUTPUT'

/*This so that we know the script
executed properly and set error_code to
0 if there is no error*/

SET @error_code = 1

EXECUTE sp_executesql @@SQLScript,
@@SQLPARAMETER ,
@Value,
@error_code OUTPUT

IF @error_code <> 0
BEGIN

SET @@ERRORMSG ='Error in script'
RAISERROR (@@ERRORMSG , 16, 1)
RETURN 1

END

RETURN 0

END
GO

Note: CHAR(13) is ASCII character 13 (carriage
return) and CHAR(39) is single quote character, use-
ful when writing strings within a string.

To test the stored procedure, try the following script:

EXECUTE sp_GetRows 'Orders', 'EmployeeID', 6

With a lot of practice and creative programming, you can

do a great deal more with dynamic scripts. One of the

down sides of dynamic scripting, apart from the obvious

complexity, is performance. Since the real SQL logic of

the script is in string variables, you lose the benefit of

executing plans and optimization by the database engine.

This is not noticeable if the generated script is simple,

but it can be an issue if the generated script is very

complex.

Advanced SQL Query Techniques 395

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Stored Procedure Generator

The idea of a stored procedure generator is to help the

developer reduce the number of scripts that need to be

written by using a stored procedure to create other

stored procedures based on a template. This is only pos-

sible if the logic for all the procedures is the same with

the exception of table names and column names. It also

helps if there is a specific naming convention used.

For example, let’s assume we have a database with more

than 100 tables and we need a stored procedure in the

form of [sp_getall <tablename>] that returns all rows

for that table. For example, if there is a table called

[Order Details], you need to create a stored procedure

called [sp_getall Order Details].

You could create all of the stored procedures one by one,

but this can be very tedious, so let’s create it using

dynamic script instead.

First let’s create our stored procedure generator. We’ll

call it [sp_generate getall].

Listing D-10

if exists
(select * from dbo.sysobjects
where id = object_id(N'[sp_generate getall]') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [sp_generate getall]
GO

create procedure [sp_generate getall]
/**
Procedure: sp_generate getall
Date: 16-July-2002
Author: Ryan N Payet
Description: Generate stored procdure for given table

Version History

396 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

0.1, 16-July-2002, Ryan N Payet:
Procedure Created

**/
@TableName nvarchar(100)

AS
BEGIN

/*Declare variable to hold script*/
DECLARE @@SQLScript as nvarchar(4000)

/*Declare variable to manage errors*/
DECLARE @@ERRORMSG as varchar(256)

/*Check if table exist*/
if NOT exists

(SELECT * FROM dbo.sysobjects
WHERE id = object_id(@TableName)
and OBJECTPROPERTY(id, N'IsUserTable') = 1)

BEGIN
SET @@ERRORMSG = 'Table "' + @TableName

+ '" does not exist in database'
RAISERROR (@@ERRORMSG , 16, 1)
RETURN 1

END

/*Build script to drop stored procedure*/
SET @@SQLScript = 'if exists' + char(13)
+ ' (select * from dbo.sysobjects' + char(13)
+ ' where id = object_id(N' + char(39)+ '[sp_getall '
+ @TableName + ']'+ char(39)+ ') and ' + char(13)
+ ' OBJECTPROPERTY(id, N' + char(39) + 'IsProcedure'
+ char(39)+ ') = 1)' + char(13)

+ 'drop procedure [sp_getall ' + @TableName + ']'
+ char(13)

/*Run script to drop stored procedure*/
EXECUTE (@@SQLScript)

/*Build script to create stored procedure*/
SET @@SQLScript =''
+ 'create procedure [sp_getall ' + @TableName + ']'
+ char(13)

+ '/**'
+ char(13)

+ 'Procedure: [sp_getall ' + @TableName + ']'

Advanced SQL Query Techniques 397

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

+ char(13)
+ 'Date: '+ CONVERT(varchar(20),GETDATE())
+ char(13)

+ 'Author: Ryan N Payet (from Auto generator)'
+ char(13)

+ 'Description: ' + char(13)
+ ' Return all rows for ' + char(13)
+ '**/'
+ char(13)

+ 'AS ' + char(13)
+ 'BEGIN ' + char(13)
+ ' SELECT * FROM ['+ @TableName +']' + char(13)
+ 'END' + char(13)

/*Run script to create stored procedure*/
EXECUTE (@@SQLScript)

END
GO

[sp_generate getall] is a simple stored procedure that,

through the use of dynamic script, creates other stored

procedures. The generated stored procedures also

include comments and the date they are generated.

Tip: The maximum size nvarchar can be is 8,000,
which means it holds only 4,000 characters. If your
dynamic script is more than 4,000 characters long,
use more than one variable to hold the scripts and
split the scripts among each. When you execute the
script, you can do the following:

EXECUTE (@@SQLScript1 + @@SQLScript2 + @@SQLScript3)

Now that the stored procedure generator is ready, you

can move on and write a line that will generate a stored

procedure for each table. For example:

...
EXECUTE [sp_generate getall] 'Orders'
EXECUTE [sp_generate getall] 'Order Details'
...

398 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

Or you can be more clever and write a script that will do

it for you through the use of a cursor:

Listing D-11

/*
Create script to generate stored procedure
for all table in database

*/

/*Declare variable to hold table name*/
DECLARE @tableName as nvarchar(100)

/*Declare cursor for Loop though table name*/
DECLARE tablename_Cursor CURSOR FOR
SELECT name FROM dbo.sysobjects
WHERE OBJECTPROPERTY(id, N'IsUserTable') = 1

OPEN tablename_Cursor

/*Get the first table name*/
FETCH NEXT FROM tablename_Cursor
INTO @tableName

/*LOOP until end of cursor*/
WHILE @@FETCH_STATUS = 0
BEGIN

/*GENERATE stored procedure*/
EXECUTE [sp_generate getall] @tableName

/*Get next table name*/
FETCH NEXT FROM tablename_Cursor
INTO @tableName

END

/*CLEAN up*/
CLOSE tablename_Cursor
DEALLOCATE tablename_Cursor

GO

This technique is practical if you only have a few tables

and stored procedures to write, but it is extremely useful

if you need to write a large number of stored procedures

with similar logic.

Advanced SQL Query Techniques 399

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

GROUP BY with CUBE and ROLLUP

GROUP BY is used in combination with aggregate func-

tions to calculate statistical values. The columns referred

to by GROUP BY are sometimes called dimension col-

umns. CUBE and ROLLUP are used to summarize the

value further to show subtotals and totals. The differ-

ences between CUBE and ROLLUP are:

� CUBE generates subtotals for all combinations of

values in dimension columns.

� ROLLUP generates subtotals for a hierarchy of val-

ues in dimension columns.

For example, if you want to find out the sale value of

Orders, then you would run the following query:

Listing D-12a

SELECT SUM([Order Details].UnitPrice *
[Order Details].Quantity *
(1 - [Order Details].Discount)

) as [Sale Value]
FROM [Order Details]

This is a simple query and will return just one value.

Now let’s do something more complicated and try to find

the sale value for each product.

Listing D-12b

SELECT Products.ProductName,
SUM([Order Details].UnitPrice *

[Order Details].Quantity *
(1 - [Order Details].Discount)

) as [Sale Value]
FROM [Order Details]

INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

GROUP BY Products.ProductName
ORDER BY Products.ProductName

400 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

The result will show the total for ProductName. We are

assuming that ProductName is unique for each product.

Figure D-3 shows a small part of a sample result set.

The result, however, does not show total sale value. To

do this, you need to use ROLLUP or CUBE. The result

is the same for both because there is only one non-aggre-

gate column.

Listing D-12c

SELECT Products.ProductName,
SUM([Order Details].UnitPrice *

[Order Details].Quantity *
(1 - [Order Details].Discount)

) as [Sale Value]
FROM [Order Details]

INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

GROUP BY Products.ProductName WITH ROLLUP
ORDER BY Products.ProductName

Advanced SQL Query Techniques 401

A
p
p
e
n
d
ix

Figure D-3: Sample result set for sale value of products
using GROUP BY

TEAM LinG - Live, Informative, Non-cost and Genuine!

The result produces an extra row with a value of null for

ProductName and the grand total for sale value. See Fig-

ure D-4.

With CUBE and ROLLUP, null means all values for that

particular column. We can modify the query so that it

reflects that fact.

Listing D-12d

SELECT CASE WHEN
(GROUPING(Products.ProductName) = 1)

THEN '<-- ALL -->'
ELSE
ISNULL(Products.ProductName, 'UNKNOWN')

END AS [Product Name],
SUM([Order Details].UnitPrice *

[Order Details].Quantity *
(1 - [Order Details].Discount)

) as [Sale Value]
FROM [Order Details]

INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

GROUP BY Products.ProductName WITH ROLLUP
ORDER BY [Product Name]

Now null is replaced by <-- ALL -->.

402 Appendix D

Figure D-4: Extra row produced by GROUP BY with ROLLUP

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note: GROUPING (<Column Name>) is an
aggregate function that returns a value of 1 when
the row is added by either the CUBE or ROLLUP
operator or 0 when the row is not the result of
CUBE or ROLLUP.

Let’s expand the example to include “Employee Name.”

Employee Name is a computed field made up of First-

Name and LastName. To match to unique employees we

use the Employees table primary key, EmployeeID, in

the GROUP BY. GROUP BY restricts the column that

you can use in the SELECT section without the use of an

aggregate function to only those referred to in the

GROUP BY section of the script. To overcome this limi-

tation, we can use the aggregate function MIN or MAX

(minimum value and maximum value, respectively) on

FirstName and LastName. Since for any given

EmployeeID, the FirstName and LastName are the

same; then the actual value for FirstName and LastName

is returned. We can also include a special field that we

can use for sorting so that all the totals are together.

Obviously, the one with the biggest group value is the

grand total.

Listing D-12e

SELECT CASE WHEN
(GROUPING(Employees.EmployeeID) = 1)
THEN '<-- ALL -->'
ELSE
ISNULL(max(Employees.FirstName) + ' ' +

max(Employees.LastName),
'UNKNOWN')

END as [Employee Name] ,
CASE WHEN
(GROUPING(Products.ProductName) = 1)

THEN '<-- ALL -->'
ELSE
ISNULL(Products.ProductName, 'UNKNOWN')

END AS [Product Name],
SUM([Order Details].UnitPrice *

[Order Details].Quantity *

Advanced SQL Query Techniques 403

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

(1 - [Order Details].Discount)
) as [Sale Value],
GROUPING(Employees.EmployeeID)

+ GROUPING(ProductName) as [Group Value]
FROM Employees

INNER JOIN Orders
ON Employees.EmployeeID = Orders.EmployeeID

INNER JOIN
[Order Details]
ON Orders.OrderID = [Order Details].OrderID

INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

GROUP BY Employees.EmployeeID, Products.ProductName WITH
ROLLUP

ORDER BY [Group Value],
[Employee Name],
Products.ProductName

The additional rows generated by ROLLUP are shown in

Figure D-5.

As you can see in the figure above, the sample data I

used resulted in 600 rows being generated. ROLLUP

finds all combinations of Employee Name against Prod-

uct Name. If we use CUBE instead, more additional rows

will be generated because CUBE will generate all possi-

ble combinations of Employee Name against Product

Name and also all possible combinations of Product

Name against Employee Name.

404 Appendix D

Figure D-5: Additional rows generated by ROLLUP

TEAM LinG - Live, Informative, Non-cost and Genuine!

As you can see in Figure D-6, with the sample data I

used, CUBE generated 677 rows compared to the 600

rows by ROLLUP.

Since CUBE generated a lot of data and might be difficult

to read, the best way to use CUBE is to make it into a

view and then use the view to see only the part of the

data that you are interested in.

Listing D-13a

if exists
(select * from sysobjects where id = object_id(N'[CUBE
EmployeeProduct]')
and OBJECTPROPERTY(id, N'IsView') = 1)

drop view [CUBE EmployeeProduct]
GO

CREATE VIEW [CUBE EmployeeProduct]
AS
SELECT CASE WHEN

(GROUPING(Employees.EmployeeID) = 1)
THEN '<-- ALL -->'
ELSE

Advanced SQL Query Techniques 405

A
p
p
e
n
d
ix

Figure D-6: Some of the additional rows generated by CUBE

TEAM LinG - Live, Informative, Non-cost and Genuine!

ISNULL(max(Employees.FirstName) + ' ' +
max(Employees.LastName),
'UNKNOWN')

END as [Employee Name] ,
CASE WHEN
(GROUPING(Products.ProductName) = 1)

THEN '<-- ALL -->'
ELSE
ISNULL(Products.ProductName, 'UNKNOWN')

END AS [Product Name],
SUM([Order Details].UnitPrice *

[Order Details].Quantity *
(1 - [Order Details].Discount)

) as [Sale Value],
GROUPING(Employees.EmployeeID)
+ GROUPING(ProductName) as [Group Value]

FROM Employees
INNER JOIN Orders
ON Employees.EmployeeID = Orders.EmployeeID

INNER JOIN
[Order Details]
ON Orders.OrderID = [Order Details].OrderID

INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

GROUP BY Employees.EmployeeID, Products.ProductName WITH
CUBE

GO

Once you have created the view, you can reduce the

amount of data returned.

Listing D-13b

SELECT * FROM [CUBE EmployeeProduct]
WHERE [Product Name] = '<-- ALL -->'
ORDER BY [Group Value],

[Employee Name]

The result is shown in Figure D-7.

406 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

Server Cross Tabulations with SQL

Cross tabulation (cross-tab or X-tab for short) is a statis-

tical report where data is displayed in a way that allows

for easy comparison. The displayed data is usually aggre-

gated, denormalized, and displayed within a matrix table

where the headings of certain rows are data themselves.

Consider this table, which shows some data about certain

items from a small electronics store.

Name Status Amount

VCR player Damaged 1

VCR player Sold 10

Monitor Damaged 3

Monitor Sold 3

Mouse Damaged 0

Mouse Sold 1

Keyboard Damaged 2

Keyboard Sold 1

The table on the following page shows another way to

display the same information.

Advanced SQL Query Techniques 407

A
p
p
e
n
d
ix

Figure D-7: The return result from the view [CUBE
EmployeeProduct]

TEAM LinG - Live, Informative, Non-cost and Genuine!

Name Sold Damaged Total

VCR player 10 1 11

Monitor 3 3 6

Mouse 1 0 1

Keyboard 1 2 3

Total 15 6 21

The new table formatted as a cross-tab now displays the

data in a more compact manner that allows for easier

comparison. Notice that the Status column, which con-

tains two discrete values (Sold, Damaged), has been

replaced by the Sold and Damaged columns. In other

words, the value from Status has been converted to col-

umns. If Status had more values, the cross-tab would

generate a column for each additional value. There is also

a column and a row to show the total for each.

Many front-end tools provide advanced cross-tab capabil-

ities. PivotTable in Excel is a good example. A problem,

however, arises when you have a huge amount of data

that you need to transfer. This tends to slow down the

front end. The way around this is to do the cross-tab, or

some of it, on the server. Very complex cross-tabs and

statistical analysis can be achieved through the use of

expensive statistical tools, such as online analytical

processing (OLAP) tools available with the Enterprise

Edition of Microsoft SQL Server 2000. However, this

might be too expensive or overkill for what you need.

Let’s start with a simple example. If you look at the

Employees table, you will notice that there are two dis-

tinct values for the Country field. These are “USA” and

“UK.” Suppose that for each job title (Employees.Title),

we want to know how many employees are from each

country. This would be a simple matter of using COUNT

and GROUP BY.

408 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

Listing D-14a

SELECT Employees.Title,
Employees.Country,
COUNT(1) as total

FROM Employees
GROUP BY Employees.Title, Employees.Country
ORDER BY Employees.Title

The result is shown in Figure D-8:

Though the result list is small, imagine for a minute that

there are many more employees and many more titles;

then the result set would be bigger and difficult to read.

To overcome this, you can put USA and UK under their

own column heading so that you end up with:

Title USA UK Total

Inside Sales Coordinator 1 0 1

Sales Manager 0 1 1

Sales Representative 3 3 6

Vice President, Sales 1 0 1

<-- ALL --> 5 4 9

To work the query out, it helps if you consider how you

would do it manually.

� For USA: You will only count a row if the country is

USA.

Advanced SQL Query Techniques 409

A
p
p
e
n
d
ix

Figure D-8: Result of counting employees for each
Title and Country

TEAM LinG - Live, Informative, Non-cost and Genuine!

� For UK: You will only count a row if the country is

UK.

Let’s now put this into a SQL query.

Listing D-14b

SELECT Employees.Title,
SUM (CASE WHEN Employees.Country = 'USA' THEN 1

ELSE 0 END) as USA,
SUM (CASE WHEN Employees.Country = 'UK' THEN 1

ELSE 0 END) as UK,
COUNT(1) as total

FROM Employees
GROUP BY Employees.Title
ORDER BY Employees.Title

Since Country is no longer a column in the SELECT but

has been split into two columns, USA and UK, we must

remove it from the GROUP BY clause. This query, how-

ever, does not have our grand total (<-- ALL -->). To

generate it, we need to make use of ROLLUP, like we

learned in the previous section. We also have to generate

an extra column [Group No] to help with the ordering.

SELECT GROUPING(Employees.Title) as [Group No],
CASE WHEN
(GROUPING(Employees.Title) = 1)

THEN '<-- ALL -->'
ELSE
ISNULL(Employees.Title, 'UNKNOWN')

END AS Title,
SUM (CASE WHEN Employees.Country = 'USA' THEN 1

ELSE 0 END) as USA,
SUM (CASE WHEN Employees.Country = 'UK' THEN 1

ELSE 0 END) as UK,
COUNT(1) as Total

FROM Employees
GROUP BY Employees.Title WITH ROLLUP
ORDER BY [Group no], Employees.Title

The result is shown in Figure D-9.

410 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

There is one problem, however. If we get an employee

from another country, say for example, Seychelles (SEZ),

we will have to recreate the script with an extra column.

What if there are 20 more countries and 50 more differ-

ent titles? It is not viable to create the columns one by

one. There is something that we learned earlier that we

can use: dynamic queries.

Cross-tab with Dynamic Queries

To demonstrate the power of dynamic queries, GROUP

BY, and cross-tabs, let’s suppose we want to compare the

sales value of every product against every employee to

generate a product-employee cross-tab. We will do this

through a stored procedure called [sp_Product_Em-

ployee_xtab].

The first design consideration is to choose which of the

Product and Employee columns you want to split into

separate columns. Since there are fewer employees than

there are products, it is better to choose Employee so

that we have fewer columns to build.

The SELECT Templates

The general template of the SELECT in this case is:

Listing D-15a

SELECT GROUPING(ProductName) as [Group No],
CASE WHEN (GROUPING(Products.ProductName) = 1)
THEN '<-- ALL -->'
ELSE

Advanced SQL Query Techniques 411

A
p
p
e
n
d
ix

Figure D-9: Simple cross-tab for employees

TEAM LinG - Live, Informative, Non-cost and Genuine!

ISNULL(Products.ProductName, 'UNKNOWN ')
END AS [Product Name],
<CASE WHEN for each Employee Name>

SUM([Order Details].UnitPrice *
[Order Details].Quantity *
(1 - [Order Details].Discount)

) as [Total Sale Value]
FROM Employees
INNER JOIN Orders
ON Employees.EmployeeID = Orders.EmployeeID

INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID

INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

GROUP BY Products.ProductName WITH ROLLUP
ORDER BY [Group No], Products.ProductName

The template for <CASE WHEN for each Employee

Name> is shown in Listing D-15b.

Listing D-15b

SUM (CASE WHEN Employees.EmployeeID = <@EmployeeID>
THEN ([Order Details].UnitPrice *

[Order Details].Quantity *
(1 - [Order Details].Discount)

)
ELSE
0

END)as [<@EmployeeName>]

The templates can be generated into a string and the

string executed using EXCUTE.

The sp_Product_Employee_xtab

Now that we know the template for the SELECT state-

ment, let’s go ahead and build sp_Product_Em-

ployee_xtab. First, we do the standard declarations.

Listing D-16a

/**
Drop stored procedure if already exist *
**/
if exists

412 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

(select * from sysobjects
where id = object_id(N'sp_Product_Employee_xtab') and
OBJECTPROPERTY(id, N'IsProcedure') = 1

)
DROP procedure sp_Product_Employee_xtab
GO

CREATE procedure sp_Product_Employee_xtab
/**
Procedure: sp_OrderAddProduct
Date: 17 July 2002
Author: Ryan N. Payet
Description:

Generate Cross-tab to compare Sale Value
of every product against every Employee

Version History

0.1, 17 July 2002, Ryan N. Payet:

Procedure Created
**/
AS
BEGIN

/*Declare Variable for script*/
DECLARE @@SQLTOPScript as nvarchar(4000)
DECLARE @@SQLCOLScript as nvarchar(4000)
DECLARE @@SQLBOTTOMScript as nvarchar(4000)

/*Declare Variable for employee*/
DECLARE @@ID as integer
DECLARE @@NAME as nvarchar(100)

Now we need to generate the <CASE WHEN for each

Employee Name> part. To do this, we need to use a cur-

sor that accesses the Employee table. Using the cursor,

we can then loop through each row in the Employees

table and generate the script.

Listing D-16b

/*Declare cursor for Loop though Employees table */
DECLARE Empoyee_Cursor CURSOR FOR
SELECT EmployeeID,

Employees.FirstName + ' ' + Employees.LastName as

Advanced SQL Query Techniques 413

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

[Employee Name]
FROM Employees ORDER BY [Employee Name]

OPEN Employee_Cursor

/*Get the first Employee*/
FETCH NEXT FROM Employee_Cursor
INTO @@ID,@@NAME
SET @@SQLCOLScript = ''
/*LOOP until end of cursor*/
WHILE @@FETCH_STATUS = 0
BEGIN
/*Build Column list*/
SET @@SQLCOLScript = @@SQLCOLScript + ',' + Char(13)
+ ' SUM (CASE WHEN Employees.EmployeeID = '
+ CONVERT(nvarchar(10),@@ID)
+ ' THEN ([Order Details].UnitPrice '
+ ' * [Order Details].Quantity * '
+ ' (1 - [Order Details].Discount))'
+ ' ELSE 0 END)as [' + @@NAME + ']'

/*Get next table name*/
FETCH NEXT FROM Employee_Cursor
INTO @@ID,@@NAME

END

/*CLEAN up CURSOR*/
CLOSE Employee_Cursor
DEALLOCATE Employee_Cursor

The final part is simple, and all that needs to be done is

to generate the rest of the scripts, join them, and

execute.

Listing D-16c

/*Declare top part of query*/
SET @@SQLTOPScript = ''
+ 'SELECT '
+ 'GROUPING(ProductName) as [Group No],' + Char(13)
+ ' CASE WHEN '
+ '(GROUPING(Products.ProductName) = 1)'
+ ' THEN ' + CHAR(39) + '<-- ALL -->' + CHAR(39)
+ ' ELSE'
+ ' ISNULL(Products.ProductName, '

414 Appendix D

TEAM LinG - Live, Informative, Non-cost and Genuine!

+ CHAR(39) + 'UNKNOWN '+ CHAR(39) + ')'
+ 'END AS [Product Name]'

/*Declare bottom part of query*/
SET @@SQLBOTTOMScript = ',' + Char(13)
+ ' SUM([Order Details].UnitPrice *'
+ ' [Order Details].Quantity *'
+ ' (1 - [Order Details].Discount)'
+ ') as [Total Sale Value] ' + Char(13)
+ 'FROM Employees ' + Char(13)
+ ' INNER JOIN Orders ' + Char(13)
+ ' ON Employees.EmployeeID = Orders.EmployeeID '
+ Char(13)

+ ' INNER JOIN [Order Details] ' + Char(13)
+ ' ON Orders.OrderID = [Order Details].OrderID '
+ Char(13)

+ ' INNER JOIN Products' + Char(13)
+ ' ON [Order Details].ProductID

= Products.ProductID' + Char(13)
+ ' GROUP BY Products.ProductName WITH ROLLUP '
+ Char(13)

+ ' ORDER BY [Group No], Products.ProductName '
+ Char(13)

EXECUTE (@@SQLTOPScript + @@SQLCOLScript
+ @@SQLBOTTOMScript)

END

GO

Now that the stored procedure is done, all we have to do

is excute it to get our cross-tab.

EXECUTE sp_Product_Employee_xtab

A sample of the result is shown in Figure D-10.

The stored procedure returns a result that is formatted

as a cross-tab. If the number of employees increases, the

number of columns will automatically be adjusted to

accommodate the new employees.

Advanced SQL Query Techniques 415

A
p
p
e
n
d
ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary

The techniques discussed in this appendix will go a long

way in helping you build an efficient and feature-rich

application. There are many ways that the same end

result can be accomplished, but knowing different sets of

techniques gives the developer additional tools so the

correct tool can be chosen for the job. In the final analy-

sis, it is all about choices.

416 Appendix D

Figure D-10: Sample result of running sp_Product_Employee_xtab

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index

AcceptChanges() method, 76
AcceptChangesDuringFill property, 57
ActiveX Data Object Multidimensional,

see ADO MD
ADO,

architecture, 4-7
data types, 6-7
using JOIN in, 12-13
using with ADO .NET, 250-251

ADO MD, 274-275
ADO .NET,

architecture, 7-9
integration with XML, 133-134
using with ADO, 250-251

Analysis Services, 262
architecture of, 270-271
installing, 262-265
setting up, 266-270

application, protecting, 129-130
application scope, 122
architecture,

ADO, 4-7
ADO .NET, 7-9
differences between ADO and

ADO .NET, 3
ASP, using with ASP .NET, 250
ASP .NET applications, 106

data access in, 115-119
using with ASP, 250

attributes, 136

BeginInit() method, 76-77
BeginTransaction() method, 24-25
Boolean expressions, evaluating, 247

Cancel() method, 33
CaseSensitive property, 71

casting, explicit, 248
Catalog object, 276
ChangeDatabase() method, 25
classes, 302

creating, 304-307
defining property in, 124-125
implementing in VB .NET,

302-303
using public fields in, 123-124

Clear() method, 77
Clone() method, 78
Close() method, 25-26
COM, 249-250

using with .NET, 249-250
Command object, 30

methods, 33-37
properties, 30-32

CommandText property, 30
CommandTimeout property, 30-31
CommandType property, 31
components, 121

designing, 122
implementing, 123-124
reasons for building, 121-122

composite data types, 301
concurrency, 119-120, 219
Connection object, 20

methods, 24-28
properties, 21-24

connection pooling, 125-127
Connection property, 31-32
connection string, defining, 181-184
ConnectionString property, 21-22
ConnectionTimeout property, 22
console applications, 104

data access in, 104-105
constraints, mapping, 166-169

417

TEAM LinG - Live, Informative, Non-cost and Genuine!

container, 121
Container property, 32, 71
ContinueUpdateOnError property, 58
Copy() method, 78-79
CreateCommand() method, 26
CreateObjRef() method, 39-40, 62
CreateParameter() method, 33
cross-tabs, 407

using, 407-411
using with dynamic queries,

411-412
cross-tabulations, see cross-tabs
cube, 273
CUBE, 400

using, 401-406
Cube object, 276-277
CubeBrowser ActiveX control, using,

285-297

data access,
improving, 125-128
in ASP .NET applications,

115-119
in console applications, 104-105
in Web Forms, 107-109
in Windows Forms applications,

103-104
in Windows Services

applications, 105-106
data binding, 100-102

reasons for using, 102-103
data retrieval methods, 175
data types, 6-7, 301

choosing, 127-128
for XML Schema, 141-142

data update methods, 175, 210
data warehousing, 128
DataAdapter object, 54

initializing, 55-57
Database property, 22
DataColumn object, binding to, 100
DataReader object, 37

methods, 39-53
properties, 37-39

DataRelation object, 13-14
nested, 159-160

DataRelationCollection property, 94-95
DataSet object, 10, 68

adding extended property to,
92-93

binding to, 101
defining schema, 154-155
initializing, 10-12
methods, 76-92
organization of, 70-71
properties, 71-76
synchronizing with

XmlDataDocument, 157-159
typed, 155-156
using, 69
using in XML Web Service,

112-115
using with XML, 144
using with XmlDataDocument,

156-157
DataSetName property, 72
DataSource property, 23
DataTable object, 10, 95

binding to, 100-101
creating, 95-98

DataTableCollection property, 93-94
DataView object, binding to, 101
DataViewManager object, binding to,

101
default properties, 247
DefaultViewManager property, 72
DELETE, using with WHERE clause,

381-383
DeleteCommand property, 58
Depth property, 37-38
DesignMode property, 72
DiffGram format, 111, 145-149
dimension columns, 400
Dimension object, 277
Dispose() method, 26-27, 34, 62, 79
Document Object Model, see DOM
document type declaration, see DTD
DOM, 134-135

loading XML documents in,
138-139

DTD, 140

Index

418

TEAM LinG - Live, Informative, Non-cost and Genuine!

dynamic queries, 391-392
using with cross tabs, 411-412

encapsulation, 316
EndInit() method, 79-80
EnforceConstraints property, 73
Enterprise Manager, using with views,

340-342
Equals() method, 27, 40
evaluation of Boolean expressions, 247
ExecuteNonQuery() method, 34-35
ExecuteReader() method, 35
ExecuteScalar() method, 35-36
ExecuteXmlReader() method, 36
explicit casting, 248
extended property,

adding to DataSet, 92-93
reading value of, 93
writing value to, 93

ExtendedProperties property, 73,
92-93

extensibility of XML, 132
Extensible Markup Language, see XML
Extensible Stylesheet Language

Transformation, see XSLT

FieldCount property, 38
Fill() method, 63-64
FillSchema() method, 64-65
First Normal Form, 327-329
FoodMart example, relational database

of, 271-272
form data binding, 100-102

Get procedure, 313-314
GetBoolean() method, 40-41
GetByte() method, 41
GetBytes() method, 41-42
GetChanges() method, 80
GetChar() method, 42
GetChars() method, 43
GetDataTypeName () method, 43-44
GetDateTime() method, 44
GetDecimal() method, 44-45
GetDouble() method, 45
GetFieldType() method, 45-46

GetFloat() method, 46
GetGuid() method, 46-47
GetHashCode() method, 47
GetInt16() method, 47-48
GetInt32() method, 48
GetInt64() method, 49
GetName() method, 49
GetOrdinal() method, 50
GetSchemaTable() method, 50
GetService() method, 80-81
GetString() method, 50-51
GetTimeSpan() method, 51
GetType() method, 27, 36, 81
GetValue() method, 51-52
GetValues() method, 52
GetXml() method, 152
GetXML() method, 82
GetXmlSchema() method, 82-83, 152
GROUP BY, using, 400-407

HasChanges() method, 83-84
HasErrors property, 73
Hierarchy object, 277

IIS, 178
setting up, 178-179

InferXmlSchema() method, 84-86
inheritance, 319-320

implementing, 320-324
InsertCommand property, 59
Internet Information Server, see IIS
IsClosed property, 38
IsDBNull() method, 52-53
Item property, 38

JOIN statement, using, 12-13

languages, differences between,
246-249

libraries, in Visual Studio, 288-289
Locale property, 74
lookup table, 103

MDX, 274
member, 308

implementing, 310-312

Index

419

TEAM LinG - Live, Informative, Non-cost and Genuine!

member variable, 308
Merge() method, 86-88
methods, 318
migrating,

ASP application to ASP .NET,
251-253

issues with, 257-258
steps for, 258-259

MissingMappingAction property, 59
MissingSchemaAction property, 60
monitoring, 128
MS SQL Server 2000, using with XML,

143-144
Multidimensional Expressions, see

MDX

namespace, Web Service, 180-181
Namespace property, 74
.NET,

application models, 99
component, 121
conversion issues, 246-249
data providers, 9
data types, 6-7
nodes, 137-138
using with COM, 249-250

.NET Framework, integration with
XML, 131-134

.NET InterOp services, 250
New() method, 55-57
NextResult() method, 53
nodes, 135-136

.NET, 137-138
normalization, 325

issues with, 332-333
process of, 326

Northwind example, functionality for,
174-175

object, 302
object orientation in VB .NET, 301-324
OLAP, 262

cubes, 273
OLAP database, 272

designing, 278-283
populating, 272

OLEDB Provider for OLAP, 273-274
OLTP database, 128
online analysis processing database, see

OLAP database
online transaction processing database,

see OLTP database
Open() method, 28
optimistic concurrency, 119
OrderProcessingWS example, 176

creating, 179-180
data retrieval methods in,

176-177
data update methods in, 209-210
DeleteOrderDetails method,

211-214
DeleteOrders method, 232-233
FullUpdateOrder method,

237-239
GetFullOrders methods, 195-196
GetFullOrders_By_Customer

method, 205-207
GetOrderDetails methods,

193-195, 201-205
GetOrders methods, 184-189
implementing, 177-179
InsertOrderDetails method,

214-216
InsertOrders method, 234-237
sp_DeleteOrders stored

procedure, 227-228
sp_InsertOrders stored

procedure, 223-227
sp_UpdateOrders stored

procedure, 220-223
testing update methods, 241
UpdateOrderDetails method,

216-218
UpdateOrders method, 228-232
using stored procedures in,

220-228
XML results, 190-193
XML Schema, 197-200

page scope, 122
Parameters property, 32
passwords, using, 129

Index

420

TEAM LinG - Live, Informative, Non-cost and Genuine!

pessimistic concurrency, 119
PivotTable Service, 273
pluggable architecture of XML,

132-133
pooling, 125-127
Prefix property, 74
primitive data types, 301
Private keyword, 310
properties, 308

defining in class, 124-125
implementing, 312-315

Property procedure, 312-313
Protected keyword, 310
Provider property, 23
public fields, using in classes, 123-124
Public keyword, 310-311

Read() method, 53
ReadXmlSchema() method, 89
ReadXml() method, 88

using, 150-152
RecordsAffected property, 39
Recordset object, 10, 15
recursion, 369, 384
recursive triggers, 369
RejectChanges() method, 89-90
Relations property, 75
relationships, maintaining, 12-14
Reset() method, 90
ROLLUP, 400

using, 401-404

Schema Object Model, see SOM
scope, 122-123
Second Normal Form, 330-331
security, 129-139
SELECT, using, 376-381
SelectCommand property, 60-61
ServerVersion property, 23-24
session scope, 122
Set procedure, 314-315
site, 121
Site property, 75
SOM, 140-141
sp_executesql stored procedure,

392-395

sp_Product_Employee_xtab stored
procedure, 412-416

sp_QuickSort stored procedure,
386-390

SQL,
creating stored procedures with,

357-360
creating triggers with, 366-369
creating views with, 343-346
using, 376-383

SQL Server .NET Data Provider, using
to connect to database, 29-30

SQL statements vs. stored procedures,
127

SqlDataAdapter object, 54-57
methods, 62-66
properties, 57-61

State property, 24
stored procedure generator, 396-399
stored procedures, 354

creating with SQL, 357-360
example of using, 361-363
executing, 361
managing, 356-357
reasons for using, 355-356
recursive, 384-390
vs. SQL statements, 127

subclassing, 132
system stored procedure, 354

TableMappings property, 61
Tables property, 75-76
tables, relations between, 159-164
Third Normal Form, 331-332
ToString() method, 28, 37, 90-91
Transaction property, 32
triggers, 364

creating with SQL, 366-369
example of using, 370-372
managing, 365
nested, 370
reasons for using, 364-365
recursive, 369

tuning, 128

Update() method, 65-66

Index

421

TEAM LinG - Live, Informative, Non-cost and Genuine!

updateable view, 353-354
UpdateCommand, 61

variant data type, 246
VB .NET, 299-300

implementing class in, 302-303
implementing inheritance in,

320-324
object orientation in, 301-324

views, 336
creating with SQL, 343-346
example of using, 347-349,

349-353
managing, 338-339
reasons for using, 336-338
updateable, 353-354
using with Enterprise Manager,

340-342
virtual table, see views
Visual Basic .NET, see VB .NET
Visual Basic, object-oriented support

in, 300
Visual Studio libraries, 288-289

Web Forms, 107
data access in, 107-109

Web Service, 175
designing, 175-176
functionality for Northwind

example, 174-175
Web Service namespace, 180-181
WHERE clause, using with DELETE,

381-383
Windows Forms applications, 99-100

data access in, 103-104

Windows Services applications, 105
data access in, 105-106

WriteXml() method, 91, 152-153
WriteXmlSchema() method, 91-92

XML, 131
extensibility of, 132
inferring in, 170-171
integrating with relational data,

143
integration with ADO .NET,

133-134
integration with .NET

Framework, 131-134
performance of classes in, 133
pluggable architecture of,

132-133
using with DataSet, 144
using with MS SQL Server 2000,

143-144
writing, 152-154

XML documents,
loading in DOM, 138-139
validating, 139-142

XML Schema,
creating DataSet relational

schema from, 164-170
data types, 141-142

XML Web Service, 109-112
using DataSet in, 112-115

XmlDataDocument,
synchronizing with DataSet,

157-159
using with DataSet, 156-157

XPath, 132
XSLT, 132

Index

422

TEAM LinG - Live, Informative, Non-cost and Genuine!

Direct3D ShaderX Vertex
and Pixel Shader Tips and
Tricks
1-55622-041-3 • $59.95
7½ x 9¼ • 520 pp.

Search Engine
Optimization with
WebPosition Gold 2
1-55622-924-0 • $49.95
7½ x 9¼ • 360 pp.

Charlie Calvert’s Learn
JBuilder
1-55622-330-7 • $59.95
7½ x 9¼ • 912 pp.

Virtual Machine Design
and Implementation in
C/C++
1-55622-903-8 • $59.95
7½ x 9¼ • 688 pp.

Visit us online at www.wordware.com for more
information. Use the following coupon code for online specials:

ADO-9658

RoboHelp for the Web
1-55622-954-2 • $49.95
7½ x 9¼ • 448 pp.

Looking for more?
Check out Wordware’s market-leading Windows Programming/

Development and Web Programming/Development Libraries

featuring the following new releases.

Memory Management
Algorithms and
Implementation in C/C++
1-55622-347-1 • $59.95
6 x 9 • 392 pp.

TEAM LinG - Live, Informative, Non-cost and Genuine!

About the CD

The CD-ROM included with this book contains examples

that demonstrate ADO .NET topics discussed in the

book. The examples are organized by chapter in the

Code Samples folder.

Warning: By opening the CD package, you
accept the terms and conditions of the CD/Source
Code Usage License Agreement on the following
page.

Opening the CD package makes this book
nonreturnable.

TEAM LinG - Live, Informative, Non-cost and Genuine!

CD/Source Code Usage License Agreement

Please read the following CD/Source Code usage license agreement before opening the CD
and using the contents therein:

1. By opening the accompanying software package, you are indicating that you have read
and agree to be bound by all terms and conditions of this CD/Source Code usage license
agreement.

2. The compilation of code and utilities contained on the CD and in the book are copy-
righted and protected by both U.S. copyright law and international copyright treaties,
and is owned by Wordware Publishing, Inc. Individual source code, example programs,
help files, freeware, shareware, utilities, and evaluation packages, including their copy-
rights, are owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, share-
ware, freeware, utilities, example programs, or evaluation programs, may be made
available on a public forum (such as a World Wide Web page, FTP site, bulletin board, or
Internet news group) without the express written permission of Wordware Publishing,
Inc. or the author of the respective source code, help files, shareware, freeware, utili-
ties, example programs, or evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or
otherwise use the enclosed programs, help files, freeware, shareware, utilities, or eval-
uation programs except as stated in this agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without
warranty of any kind. Wordware Publishing, Inc. and the authors specifically disclaim all
other warranties, express or implied, including but not limited to implied warranties of
merchantability and fitness for a particular purpose with respect to defects in the disk,
the program, source code, sample files, help files, freeware, shareware, utilities, and
evaluation programs contained therein, and/or the techniques described in the book and
implemented in the example programs. In no event shall Wordware Publishing, Inc., its
dealers, its distributors, or the authors be liable or held responsible for any loss of profit
or any other alleged or actual private or commercial damage, including but not limited
to special, incidental, consequential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes.
The CD and all accompanying source code, sample files, help files, freeware, shareware,
utilities, and evaluation programs may be copied to your hard drive. With the exception
of freeware and shareware programs, at no time can any part of the contents of this CD
reside on more than one computer at one time. The contents of the CD can be copied to
another computer, as long as the contents of the CD contained on the original computer
are deleted.

7. You may not include any part of the CD contents, including all source code, example
programs, shareware, freeware, help files, utilities, or evaluation programs in any com-
pilation of source code, utilities, help files, example programs, freeware, shareware, or
evaluation programs on any media, including but not limited to CD, disk, or Internet
distribution, without the express written permission of Wordware Publishing, Inc. or
the owner of the individual source code, utilities, help files, example programs,
freeware, shareware, or evaluation programs.

8. You may use the source code, techniques, and example programs in your own commer-
cial or private applications unless otherwise noted by additional usage agreements as
found on the CD.

Warning: By opening the CD package, you
accept the terms and conditions of the CD/Source
Code Usage License Agreement.

Additionally, opening the CD package makes this
book nonreturnable.

TEAM LinG - Live, Informative, Non-cost and Genuine!

	ADO.NET.Programming
	Contents
	Aims and Objectives
	Part I Introduction to ADO.NET
	Chapter 1 Growing up from ADO

	Part II ADO .NET Revealed
	Chapter 2 Interacting with Databases
	Chapter 3 Data Manipulation
	Chapter 4 Designing ADO .NET Applications
	Chapter 5 XML Integration with ADO .NET
	Chapter 6 Practical ADO .NET Programming (Part One)
	Chapter 7 Practical ADO .NET Programming (Part Two)

	Part III Special Topics
	Chapter 8 Migrating ADO Applications
	Chapter 9 Manipulating Multidimensional Data

	Appendix A The Object-Oriented Features of VB .NET
	Appendix B Database Normalization
	Appendix C Views, Stored Procedures, and Triggers
	Appendix D Advanced SQL Query Techniques
	Index

